Struct jumpy::core::physics::rapier::nalgebra::Transform

source ·
#[repr(C)]
pub struct Transform<T, C, const D: usize>{ matrix: Matrix<T, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output, <DefaultAllocator as Allocator<T, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>>::Buffer>, _phantom: PhantomData<C>, }
Expand description

A transformation matrix in homogeneous coordinates.

It is stored as a matrix with dimensions (D + 1, D + 1), e.g., it stores a 4x4 matrix for a 3D transformation.

Fields§

§matrix: Matrix<T, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output, <DefaultAllocator as Allocator<T, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>>::Buffer>§_phantom: PhantomData<C>

Implementations§

source§

impl<T, C, const D: usize> Transform<T, C, D>

source

pub fn from_matrix_unchecked( matrix: Matrix<T, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output, <DefaultAllocator as Allocator<T, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>>::Buffer>, ) -> Transform<T, C, D>

Creates a new transformation from the given homogeneous matrix. The transformation category of Self is not checked to be verified by the given matrix.

source

pub fn into_inner( self, ) -> Matrix<T, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output, <DefaultAllocator as Allocator<T, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>>::Buffer>

Retrieves the underlying matrix.

§Examples

let m = Matrix3::new(1.0, 2.0, 0.0,
                     3.0, 4.0, 0.0,
                     0.0, 0.0, 1.0);
let t = Transform2::from_matrix_unchecked(m);
assert_eq!(t.into_inner(), m);
source

pub fn unwrap( self, ) -> Matrix<T, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output, <DefaultAllocator as Allocator<T, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>>::Buffer>

👎Deprecated: use .into_inner() instead

Retrieves the underlying matrix. Deprecated: Use Transform::into_inner instead.

source

pub fn matrix( &self, ) -> &Matrix<T, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output, <DefaultAllocator as Allocator<T, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>>::Buffer>

A reference to the underlying matrix.

§Examples

let m = Matrix3::new(1.0, 2.0, 0.0,
                     3.0, 4.0, 0.0,
                     0.0, 0.0, 1.0);
let t = Transform2::from_matrix_unchecked(m);
assert_eq!(*t.matrix(), m);
source

pub fn matrix_mut_unchecked( &mut self, ) -> &mut Matrix<T, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output, <DefaultAllocator as Allocator<T, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>>::Buffer>

A mutable reference to the underlying matrix.

It is _unchecked because direct modifications of this matrix may break invariants identified by this transformation category.

§Examples

let m = Matrix3::new(1.0, 2.0, 0.0,
                     3.0, 4.0, 0.0,
                     0.0, 0.0, 1.0);
let mut t = Transform2::from_matrix_unchecked(m);
t.matrix_mut_unchecked().m12 = 42.0;
t.matrix_mut_unchecked().m23 = 90.0;


let expected = Matrix3::new(1.0, 42.0, 0.0,
                            3.0, 4.0,  90.0,
                            0.0, 0.0,  1.0);
assert_eq!(*t.matrix(), expected);
source

pub fn set_category<CNew>(self) -> Transform<T, CNew, D>
where CNew: SuperTCategoryOf<C>,

Sets the category of this transform.

This can be done only if the new category is more general than the current one, e.g., a transform with category TProjective cannot be converted to a transform with category TAffine because not all projective transformations are affine (the other way-round is valid though).

source

pub fn clone_owned(&self) -> Transform<T, C, D>

👎Deprecated: This method is redundant with automatic Copy and the .clone() method and will be removed in a future release.

Clones this transform into one that owns its data.

source

pub fn to_homogeneous( &self, ) -> Matrix<T, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output, <DefaultAllocator as Allocator<T, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>>::Buffer>

Converts this transform into its equivalent homogeneous transformation matrix.

§Examples

let m = Matrix3::new(1.0, 2.0, 0.0,
                     3.0, 4.0, 0.0,
                     0.0, 0.0, 1.0);
let t = Transform2::from_matrix_unchecked(m);
assert_eq!(t.into_inner(), m);
source

pub fn try_inverse(self) -> Option<Transform<T, C, D>>

Attempts to invert this transformation. You may use .inverse instead of this transformation has a subcategory of TProjective (i.e. if it is a Projective{2,3} or Affine{2,3}).

§Examples

let m = Matrix3::new(2.0, 2.0, -0.3,
                     3.0, 4.0, 0.1,
                     0.0, 0.0, 1.0);
let t = Transform2::from_matrix_unchecked(m);
let inv_t = t.try_inverse().unwrap();
assert_relative_eq!(t * inv_t, Transform2::identity());
assert_relative_eq!(inv_t * t, Transform2::identity());

// Non-invertible case.
let m = Matrix3::new(0.0, 2.0, 1.0,
                     3.0, 0.0, 5.0,
                     0.0, 0.0, 0.0);
let t = Transform2::from_matrix_unchecked(m);
assert!(t.try_inverse().is_none());
source

pub fn inverse(self) -> Transform<T, C, D>

Inverts this transformation. Use .try_inverse if this transform has the TGeneral category (i.e., a Transform{2,3} may not be invertible).

§Examples

let m = Matrix3::new(2.0, 2.0, -0.3,
                     3.0, 4.0, 0.1,
                     0.0, 0.0, 1.0);
let proj = Projective2::from_matrix_unchecked(m);
let inv_t = proj.inverse();
assert_relative_eq!(proj * inv_t, Projective2::identity());
assert_relative_eq!(inv_t * proj, Projective2::identity());
source

pub fn try_inverse_mut(&mut self) -> bool

Attempts to invert this transformation in-place. You may use .inverse_mut instead of this transformation has a subcategory of TProjective.

§Examples

let m = Matrix3::new(2.0, 2.0, -0.3,
                     3.0, 4.0, 0.1,
                     0.0, 0.0, 1.0);
let t = Transform2::from_matrix_unchecked(m);
let mut inv_t = t;
assert!(inv_t.try_inverse_mut());
assert_relative_eq!(t * inv_t, Transform2::identity());
assert_relative_eq!(inv_t * t, Transform2::identity());

// Non-invertible case.
let m = Matrix3::new(0.0, 2.0, 1.0,
                     3.0, 0.0, 5.0,
                     0.0, 0.0, 0.0);
let mut t = Transform2::from_matrix_unchecked(m);
assert!(!t.try_inverse_mut());
source

pub fn inverse_mut(&mut self)

Inverts this transformation in-place. Use .try_inverse_mut if this transform has the TGeneral category (it may not be invertible).

§Examples

let m = Matrix3::new(2.0, 2.0, -0.3,
                     3.0, 4.0, 0.1,
                     0.0, 0.0, 1.0);
let proj = Projective2::from_matrix_unchecked(m);
let mut inv_t = proj;
inv_t.inverse_mut();
assert_relative_eq!(proj * inv_t, Projective2::identity());
assert_relative_eq!(inv_t * proj, Projective2::identity());
source§

impl<T, C, const D: usize> Transform<T, C, D>

source

pub fn transform_point(&self, pt: &OPoint<T, Const<D>>) -> OPoint<T, Const<D>>

Transform the given point by this transformation.

This is the same as the multiplication self * pt.

source

pub fn transform_vector( &self, v: &Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>, ) -> Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>

Transform the given vector by this transformation, ignoring the translational component of the transformation.

This is the same as the multiplication self * v.

source§

impl<T, C, const D: usize> Transform<T, C, D>

source

pub fn inverse_transform_point( &self, pt: &OPoint<T, Const<D>>, ) -> OPoint<T, Const<D>>

Transform the given point by the inverse of this transformation. This may be cheaper than inverting the transformation and transforming the point.

source

pub fn inverse_transform_vector( &self, v: &Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>, ) -> Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>

Transform the given vector by the inverse of this transformation. This may be cheaper than inverting the transformation and transforming the vector.

source§

impl<T, const D: usize> Transform<T, TGeneral, D>

source

pub fn matrix_mut( &mut self, ) -> &mut Matrix<T, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output, <DefaultAllocator as Allocator<T, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>>::Buffer>

A mutable reference to underlying matrix. Use .matrix_mut_unchecked instead if this transformation category is not TGeneral.

source§

impl<T, C, const D: usize> Transform<T, C, D>

source

pub fn identity() -> Transform<T, C, D>

Creates a new identity transform.

§Example

let pt = Point2::new(1.0, 2.0);
let t = Projective2::identity();
assert_eq!(t * pt, pt);

let aff = Affine2::identity();
assert_eq!(aff * pt, pt);

let aff = Transform2::identity();
assert_eq!(aff * pt, pt);

// Also works in 3D.
let pt = Point3::new(1.0, 2.0, 3.0);
let t = Projective3::identity();
assert_eq!(t * pt, pt);

let aff = Affine3::identity();
assert_eq!(aff * pt, pt);

let aff = Transform3::identity();
assert_eq!(aff * pt, pt);

Trait Implementations§

source§

impl<T, C, const D: usize> AbsDiffEq for Transform<T, C, D>
where T: RealField, C: TCategory, Const<D>: DimNameAdd<Const<1>>, <T as AbsDiffEq>::Epsilon: Clone, DefaultAllocator: Allocator<T, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>,

§

type Epsilon = <T as AbsDiffEq>::Epsilon

Used for specifying relative comparisons.
source§

fn default_epsilon() -> <Transform<T, C, D> as AbsDiffEq>::Epsilon

The default tolerance to use when testing values that are close together. Read more
source§

fn abs_diff_eq( &self, other: &Transform<T, C, D>, epsilon: <Transform<T, C, D> as AbsDiffEq>::Epsilon, ) -> bool

A test for equality that uses the absolute difference to compute the approximate equality of two numbers.
§

fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool

The inverse of [AbsDiffEq::abs_diff_eq].
source§

impl<T, C, const D: usize> Clone for Transform<T, C, D>

source§

fn clone(&self) -> Transform<T, C, D>

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl<T, C, const D: usize> Debug for Transform<T, C, D>

source§

fn fmt(&self, formatter: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
source§

impl<T, C, const D: usize> Default for Transform<T, C, D>

source§

fn default() -> Transform<T, C, D>

Returns the “default value” for a type. Read more
source§

impl<'a, 'b, T, C, const D: usize> Div<&'b Rotation<T, D>> for &'a Transform<T, C, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the / operator.
source§

fn div( self, rhs: &'b Rotation<T, D>, ) -> <&'a Transform<T, C, D> as Div<&'b Rotation<T, D>>>::Output

Performs the / operation. Read more
source§

impl<'b, T, C, const D: usize> Div<&'b Rotation<T, D>> for Transform<T, C, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the / operator.
source§

fn div( self, rhs: &'b Rotation<T, D>, ) -> <Transform<T, C, D> as Div<&'b Rotation<T, D>>>::Output

Performs the / operation. Read more
source§

impl<'a, 'b, T, C> Div<&'b Transform<T, C, 3>> for &'a Unit<Quaternion<T>>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, 3>

The resulting type after applying the / operator.
source§

fn div( self, rhs: &'b Transform<T, C, 3>, ) -> <&'a Unit<Quaternion<T>> as Div<&'b Transform<T, C, 3>>>::Output

Performs the / operation. Read more
source§

impl<'b, T, C> Div<&'b Transform<T, C, 3>> for Unit<Quaternion<T>>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, 3>

The resulting type after applying the / operator.
source§

fn div( self, rhs: &'b Transform<T, C, 3>, ) -> <Unit<Quaternion<T>> as Div<&'b Transform<T, C, 3>>>::Output

Performs the / operation. Read more
source§

impl<'a, 'b, T, C, const D: usize> Div<&'b Transform<T, C, D>> for &'a Rotation<T, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the / operator.
source§

fn div( self, rhs: &'b Transform<T, C, D>, ) -> <&'a Rotation<T, D> as Div<&'b Transform<T, C, D>>>::Output

Performs the / operation. Read more
source§

impl<'a, 'b, T, C, const D: usize> Div<&'b Transform<T, C, D>> for &'a Translation<T, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the / operator.
source§

fn div( self, rhs: &'b Transform<T, C, D>, ) -> <&'a Translation<T, D> as Div<&'b Transform<T, C, D>>>::Output

Performs the / operation. Read more
source§

impl<'b, T, C, const D: usize> Div<&'b Transform<T, C, D>> for Rotation<T, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the / operator.
source§

fn div( self, rhs: &'b Transform<T, C, D>, ) -> <Rotation<T, D> as Div<&'b Transform<T, C, D>>>::Output

Performs the / operation. Read more
source§

impl<'b, T, C, const D: usize> Div<&'b Transform<T, C, D>> for Translation<T, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the / operator.
source§

fn div( self, rhs: &'b Transform<T, C, D>, ) -> <Translation<T, D> as Div<&'b Transform<T, C, D>>>::Output

Performs the / operation. Read more
source§

impl<'a, 'b, T, CA, CB, const D: usize> Div<&'b Transform<T, CB, D>> for &'a Transform<T, CA, D>

§

type Output = Transform<T, <CA as TCategoryMul<CB>>::Representative, D>

The resulting type after applying the / operator.
source§

fn div( self, rhs: &'b Transform<T, CB, D>, ) -> <&'a Transform<T, CA, D> as Div<&'b Transform<T, CB, D>>>::Output

Performs the / operation. Read more
source§

impl<'b, T, CA, CB, const D: usize> Div<&'b Transform<T, CB, D>> for Transform<T, CA, D>

§

type Output = Transform<T, <CA as TCategoryMul<CB>>::Representative, D>

The resulting type after applying the / operator.
source§

fn div( self, rhs: &'b Transform<T, CB, D>, ) -> <Transform<T, CA, D> as Div<&'b Transform<T, CB, D>>>::Output

Performs the / operation. Read more
source§

impl<'a, 'b, T, C, const D: usize> Div<&'b Translation<T, D>> for &'a Transform<T, C, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the / operator.
source§

fn div( self, rhs: &'b Translation<T, D>, ) -> <&'a Transform<T, C, D> as Div<&'b Translation<T, D>>>::Output

Performs the / operation. Read more
source§

impl<'b, T, C, const D: usize> Div<&'b Translation<T, D>> for Transform<T, C, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the / operator.
source§

fn div( self, rhs: &'b Translation<T, D>, ) -> <Transform<T, C, D> as Div<&'b Translation<T, D>>>::Output

Performs the / operation. Read more
source§

impl<'a, 'b, T, C> Div<&'b Unit<Quaternion<T>>> for &'a Transform<T, C, 3>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, 3>

The resulting type after applying the / operator.
source§

fn div( self, rhs: &'b Unit<Quaternion<T>>, ) -> <&'a Transform<T, C, 3> as Div<&'b Unit<Quaternion<T>>>>::Output

Performs the / operation. Read more
source§

impl<'b, T, C> Div<&'b Unit<Quaternion<T>>> for Transform<T, C, 3>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, 3>

The resulting type after applying the / operator.
source§

fn div( self, rhs: &'b Unit<Quaternion<T>>, ) -> <Transform<T, C, 3> as Div<&'b Unit<Quaternion<T>>>>::Output

Performs the / operation. Read more
source§

impl<'a, T, C, const D: usize> Div<Rotation<T, D>> for &'a Transform<T, C, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the / operator.
source§

fn div( self, rhs: Rotation<T, D>, ) -> <&'a Transform<T, C, D> as Div<Rotation<T, D>>>::Output

Performs the / operation. Read more
source§

impl<T, C, const D: usize> Div<Rotation<T, D>> for Transform<T, C, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the / operator.
source§

fn div( self, rhs: Rotation<T, D>, ) -> <Transform<T, C, D> as Div<Rotation<T, D>>>::Output

Performs the / operation. Read more
source§

impl<'a, T, C> Div<Transform<T, C, 3>> for &'a Unit<Quaternion<T>>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, 3>

The resulting type after applying the / operator.
source§

fn div( self, rhs: Transform<T, C, 3>, ) -> <&'a Unit<Quaternion<T>> as Div<Transform<T, C, 3>>>::Output

Performs the / operation. Read more
source§

impl<T, C> Div<Transform<T, C, 3>> for Unit<Quaternion<T>>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, 3>

The resulting type after applying the / operator.
source§

fn div( self, rhs: Transform<T, C, 3>, ) -> <Unit<Quaternion<T>> as Div<Transform<T, C, 3>>>::Output

Performs the / operation. Read more
source§

impl<'a, T, C, const D: usize> Div<Transform<T, C, D>> for &'a Rotation<T, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the / operator.
source§

fn div( self, rhs: Transform<T, C, D>, ) -> <&'a Rotation<T, D> as Div<Transform<T, C, D>>>::Output

Performs the / operation. Read more
source§

impl<'a, T, C, const D: usize> Div<Transform<T, C, D>> for &'a Translation<T, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the / operator.
source§

fn div( self, rhs: Transform<T, C, D>, ) -> <&'a Translation<T, D> as Div<Transform<T, C, D>>>::Output

Performs the / operation. Read more
source§

impl<T, C, const D: usize> Div<Transform<T, C, D>> for Rotation<T, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the / operator.
source§

fn div( self, rhs: Transform<T, C, D>, ) -> <Rotation<T, D> as Div<Transform<T, C, D>>>::Output

Performs the / operation. Read more
source§

impl<T, C, const D: usize> Div<Transform<T, C, D>> for Translation<T, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the / operator.
source§

fn div( self, rhs: Transform<T, C, D>, ) -> <Translation<T, D> as Div<Transform<T, C, D>>>::Output

Performs the / operation. Read more
source§

impl<'a, T, CA, CB, const D: usize> Div<Transform<T, CB, D>> for &'a Transform<T, CA, D>

§

type Output = Transform<T, <CA as TCategoryMul<CB>>::Representative, D>

The resulting type after applying the / operator.
source§

fn div( self, rhs: Transform<T, CB, D>, ) -> <&'a Transform<T, CA, D> as Div<Transform<T, CB, D>>>::Output

Performs the / operation. Read more
source§

impl<T, CA, CB, const D: usize> Div<Transform<T, CB, D>> for Transform<T, CA, D>

§

type Output = Transform<T, <CA as TCategoryMul<CB>>::Representative, D>

The resulting type after applying the / operator.
source§

fn div( self, rhs: Transform<T, CB, D>, ) -> <Transform<T, CA, D> as Div<Transform<T, CB, D>>>::Output

Performs the / operation. Read more
source§

impl<'a, T, C, const D: usize> Div<Translation<T, D>> for &'a Transform<T, C, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the / operator.
source§

fn div( self, rhs: Translation<T, D>, ) -> <&'a Transform<T, C, D> as Div<Translation<T, D>>>::Output

Performs the / operation. Read more
source§

impl<T, C, const D: usize> Div<Translation<T, D>> for Transform<T, C, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the / operator.
source§

fn div( self, rhs: Translation<T, D>, ) -> <Transform<T, C, D> as Div<Translation<T, D>>>::Output

Performs the / operation. Read more
source§

impl<'a, T, C> Div<Unit<Quaternion<T>>> for &'a Transform<T, C, 3>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, 3>

The resulting type after applying the / operator.
source§

fn div( self, rhs: Unit<Quaternion<T>>, ) -> <&'a Transform<T, C, 3> as Div<Unit<Quaternion<T>>>>::Output

Performs the / operation. Read more
source§

impl<T, C> Div<Unit<Quaternion<T>>> for Transform<T, C, 3>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, 3>

The resulting type after applying the / operator.
source§

fn div( self, rhs: Unit<Quaternion<T>>, ) -> <Transform<T, C, 3> as Div<Unit<Quaternion<T>>>>::Output

Performs the / operation. Read more
source§

impl<'b, T, C, const D: usize> DivAssign<&'b Rotation<T, D>> for Transform<T, C, D>

source§

fn div_assign(&mut self, rhs: &'b Rotation<T, D>)

Performs the /= operation. Read more
source§

impl<'b, T, CA, CB, const D: usize> DivAssign<&'b Transform<T, CB, D>> for Transform<T, CA, D>

source§

fn div_assign(&mut self, rhs: &'b Transform<T, CB, D>)

Performs the /= operation. Read more
source§

impl<'b, T, C, const D: usize> DivAssign<&'b Translation<T, D>> for Transform<T, C, D>

source§

fn div_assign(&mut self, rhs: &'b Translation<T, D>)

Performs the /= operation. Read more
source§

impl<'b, T, C> DivAssign<&'b Unit<Complex<T>>> for Transform<T, C, 2>

source§

fn div_assign(&mut self, rhs: &'b Unit<Complex<T>>)

Performs the /= operation. Read more
source§

impl<'b, T, C> DivAssign<&'b Unit<Quaternion<T>>> for Transform<T, C, 3>

source§

fn div_assign(&mut self, rhs: &'b Unit<Quaternion<T>>)

Performs the /= operation. Read more
source§

impl<T, C, const D: usize> DivAssign<Rotation<T, D>> for Transform<T, C, D>

source§

fn div_assign(&mut self, rhs: Rotation<T, D>)

Performs the /= operation. Read more
source§

impl<T, CA, CB, const D: usize> DivAssign<Transform<T, CB, D>> for Transform<T, CA, D>

source§

fn div_assign(&mut self, rhs: Transform<T, CB, D>)

Performs the /= operation. Read more
source§

impl<T, C, const D: usize> DivAssign<Translation<T, D>> for Transform<T, C, D>

source§

fn div_assign(&mut self, rhs: Translation<T, D>)

Performs the /= operation. Read more
source§

impl<T, C> DivAssign<Unit<Complex<T>>> for Transform<T, C, 2>

source§

fn div_assign(&mut self, rhs: Unit<Complex<T>>)

Performs the /= operation. Read more
source§

impl<T, C> DivAssign<Unit<Quaternion<T>>> for Transform<T, C, 3>

source§

fn div_assign(&mut self, rhs: Unit<Quaternion<T>>)

Performs the /= operation. Read more
source§

impl<T, C, const D: usize> From<Transform<T, C, D>> for Matrix<T, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output, <DefaultAllocator as Allocator<T, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>>::Buffer>

source§

fn from( t: Transform<T, C, D>, ) -> Matrix<T, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output, <DefaultAllocator as Allocator<T, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>>::Buffer>

Converts to this type from the input type.
source§

impl<T, C, const D: usize> Hash for Transform<T, C, D>

source§

fn hash<H>(&self, state: &mut H)
where H: Hasher,

Feeds this value into the given Hasher. Read more
1.3.0 · source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
source§

impl<T, C, const D: usize> Index<(usize, usize)> for Transform<T, C, D>

§

type Output = T

The returned type after indexing.
source§

fn index(&self, ij: (usize, usize)) -> &T

Performs the indexing (container[index]) operation. Read more
source§

impl<T, const D: usize> IndexMut<(usize, usize)> for Transform<T, TGeneral, D>

source§

fn index_mut(&mut self, ij: (usize, usize)) -> &mut T

Performs the mutable indexing (container[index]) operation. Read more
source§

impl<'a, 'b, T, C, R, const D: usize> Mul<&'b Isometry<T, R, D>> for &'a Transform<T, C, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b Isometry<T, R, D>, ) -> <&'a Transform<T, C, D> as Mul<&'b Isometry<T, R, D>>>::Output

Performs the * operation. Read more
source§

impl<'b, T, C, R, const D: usize> Mul<&'b Isometry<T, R, D>> for Transform<T, C, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b Isometry<T, R, D>, ) -> <Transform<T, C, D> as Mul<&'b Isometry<T, R, D>>>::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T, C, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>> for &'a Transform<T, C, D>

§

type Output = Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>, ) -> <&'a Transform<T, C, D> as Mul<&'b Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>>>::Output

Performs the * operation. Read more
source§

impl<'b, T, C, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>> for Transform<T, C, D>

§

type Output = Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>, ) -> <Transform<T, C, D> as Mul<&'b Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>>>::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T, C, const D: usize> Mul<&'b OPoint<T, Const<D>>> for &'a Transform<T, C, D>

§

type Output = OPoint<T, Const<D>>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b OPoint<T, Const<D>>, ) -> <&'a Transform<T, C, D> as Mul<&'b OPoint<T, Const<D>>>>::Output

Performs the * operation. Read more
source§

impl<'b, T, C, const D: usize> Mul<&'b OPoint<T, Const<D>>> for Transform<T, C, D>

§

type Output = OPoint<T, Const<D>>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b OPoint<T, Const<D>>, ) -> <Transform<T, C, D> as Mul<&'b OPoint<T, Const<D>>>>::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T, C, const D: usize> Mul<&'b Rotation<T, D>> for &'a Transform<T, C, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b Rotation<T, D>, ) -> <&'a Transform<T, C, D> as Mul<&'b Rotation<T, D>>>::Output

Performs the * operation. Read more
source§

impl<'b, T, C, const D: usize> Mul<&'b Rotation<T, D>> for Transform<T, C, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b Rotation<T, D>, ) -> <Transform<T, C, D> as Mul<&'b Rotation<T, D>>>::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T, C, R, const D: usize> Mul<&'b Similarity<T, R, D>> for &'a Transform<T, C, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b Similarity<T, R, D>, ) -> <&'a Transform<T, C, D> as Mul<&'b Similarity<T, R, D>>>::Output

Performs the * operation. Read more
source§

impl<'b, T, C, R, const D: usize> Mul<&'b Similarity<T, R, D>> for Transform<T, C, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b Similarity<T, R, D>, ) -> <Transform<T, C, D> as Mul<&'b Similarity<T, R, D>>>::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T, C> Mul<&'b Transform<T, C, 2>> for &'a Unit<Complex<T>>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, 2>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b Transform<T, C, 2>, ) -> <&'a Unit<Complex<T>> as Mul<&'b Transform<T, C, 2>>>::Output

Performs the * operation. Read more
source§

impl<'b, T, C> Mul<&'b Transform<T, C, 2>> for Unit<Complex<T>>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, 2>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b Transform<T, C, 2>, ) -> <Unit<Complex<T>> as Mul<&'b Transform<T, C, 2>>>::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T, C> Mul<&'b Transform<T, C, 3>> for &'a Unit<Quaternion<T>>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, 3>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b Transform<T, C, 3>, ) -> <&'a Unit<Quaternion<T>> as Mul<&'b Transform<T, C, 3>>>::Output

Performs the * operation. Read more
source§

impl<'b, T, C> Mul<&'b Transform<T, C, 3>> for Unit<Quaternion<T>>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, 3>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b Transform<T, C, 3>, ) -> <Unit<Quaternion<T>> as Mul<&'b Transform<T, C, 3>>>::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T, C, R, const D: usize> Mul<&'b Transform<T, C, D>> for &'a Isometry<T, R, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b Transform<T, C, D>, ) -> <&'a Isometry<T, R, D> as Mul<&'b Transform<T, C, D>>>::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T, C, const D: usize> Mul<&'b Transform<T, C, D>> for &'a Rotation<T, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b Transform<T, C, D>, ) -> <&'a Rotation<T, D> as Mul<&'b Transform<T, C, D>>>::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T, C, R, const D: usize> Mul<&'b Transform<T, C, D>> for &'a Similarity<T, R, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b Transform<T, C, D>, ) -> <&'a Similarity<T, R, D> as Mul<&'b Transform<T, C, D>>>::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T, C, const D: usize> Mul<&'b Transform<T, C, D>> for &'a Translation<T, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b Transform<T, C, D>, ) -> <&'a Translation<T, D> as Mul<&'b Transform<T, C, D>>>::Output

Performs the * operation. Read more
source§

impl<'b, T, C, R, const D: usize> Mul<&'b Transform<T, C, D>> for Isometry<T, R, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b Transform<T, C, D>, ) -> <Isometry<T, R, D> as Mul<&'b Transform<T, C, D>>>::Output

Performs the * operation. Read more
source§

impl<'b, T, C, const D: usize> Mul<&'b Transform<T, C, D>> for Rotation<T, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b Transform<T, C, D>, ) -> <Rotation<T, D> as Mul<&'b Transform<T, C, D>>>::Output

Performs the * operation. Read more
source§

impl<'b, T, C, R, const D: usize> Mul<&'b Transform<T, C, D>> for Similarity<T, R, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b Transform<T, C, D>, ) -> <Similarity<T, R, D> as Mul<&'b Transform<T, C, D>>>::Output

Performs the * operation. Read more
source§

impl<'b, T, C, const D: usize> Mul<&'b Transform<T, C, D>> for Translation<T, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b Transform<T, C, D>, ) -> <Translation<T, D> as Mul<&'b Transform<T, C, D>>>::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T, CA, CB, const D: usize> Mul<&'b Transform<T, CB, D>> for &'a Transform<T, CA, D>

§

type Output = Transform<T, <CA as TCategoryMul<CB>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b Transform<T, CB, D>, ) -> <&'a Transform<T, CA, D> as Mul<&'b Transform<T, CB, D>>>::Output

Performs the * operation. Read more
source§

impl<'b, T, CA, CB, const D: usize> Mul<&'b Transform<T, CB, D>> for Transform<T, CA, D>

§

type Output = Transform<T, <CA as TCategoryMul<CB>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b Transform<T, CB, D>, ) -> <Transform<T, CA, D> as Mul<&'b Transform<T, CB, D>>>::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T, C, const D: usize> Mul<&'b Translation<T, D>> for &'a Transform<T, C, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b Translation<T, D>, ) -> <&'a Transform<T, C, D> as Mul<&'b Translation<T, D>>>::Output

Performs the * operation. Read more
source§

impl<'b, T, C, const D: usize> Mul<&'b Translation<T, D>> for Transform<T, C, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b Translation<T, D>, ) -> <Transform<T, C, D> as Mul<&'b Translation<T, D>>>::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T, C> Mul<&'b Unit<Complex<T>>> for &'a Transform<T, C, 2>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, 2>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b Unit<Complex<T>>, ) -> <&'a Transform<T, C, 2> as Mul<&'b Unit<Complex<T>>>>::Output

Performs the * operation. Read more
source§

impl<'b, T, C> Mul<&'b Unit<Complex<T>>> for Transform<T, C, 2>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, 2>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b Unit<Complex<T>>, ) -> <Transform<T, C, 2> as Mul<&'b Unit<Complex<T>>>>::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T, C> Mul<&'b Unit<Quaternion<T>>> for &'a Transform<T, C, 3>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, 3>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b Unit<Quaternion<T>>, ) -> <&'a Transform<T, C, 3> as Mul<&'b Unit<Quaternion<T>>>>::Output

Performs the * operation. Read more
source§

impl<'b, T, C> Mul<&'b Unit<Quaternion<T>>> for Transform<T, C, 3>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, 3>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b Unit<Quaternion<T>>, ) -> <Transform<T, C, 3> as Mul<&'b Unit<Quaternion<T>>>>::Output

Performs the * operation. Read more
source§

impl<'a, T, C, R, const D: usize> Mul<Isometry<T, R, D>> for &'a Transform<T, C, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: Isometry<T, R, D>, ) -> <&'a Transform<T, C, D> as Mul<Isometry<T, R, D>>>::Output

Performs the * operation. Read more
source§

impl<T, C, R, const D: usize> Mul<Isometry<T, R, D>> for Transform<T, C, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: Isometry<T, R, D>, ) -> <Transform<T, C, D> as Mul<Isometry<T, R, D>>>::Output

Performs the * operation. Read more
source§

impl<'a, T, C, const D: usize> Mul<Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>> for &'a Transform<T, C, D>

§

type Output = Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>, ) -> <&'a Transform<T, C, D> as Mul<Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>>>::Output

Performs the * operation. Read more
source§

impl<T, C, const D: usize> Mul<Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>> for Transform<T, C, D>

§

type Output = Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>, ) -> <Transform<T, C, D> as Mul<Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>>>::Output

Performs the * operation. Read more
source§

impl<'a, T, C, const D: usize> Mul<OPoint<T, Const<D>>> for &'a Transform<T, C, D>

§

type Output = OPoint<T, Const<D>>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: OPoint<T, Const<D>>, ) -> <&'a Transform<T, C, D> as Mul<OPoint<T, Const<D>>>>::Output

Performs the * operation. Read more
source§

impl<T, C, const D: usize> Mul<OPoint<T, Const<D>>> for Transform<T, C, D>

§

type Output = OPoint<T, Const<D>>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: OPoint<T, Const<D>>, ) -> <Transform<T, C, D> as Mul<OPoint<T, Const<D>>>>::Output

Performs the * operation. Read more
source§

impl<'a, T, C, const D: usize> Mul<Rotation<T, D>> for &'a Transform<T, C, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: Rotation<T, D>, ) -> <&'a Transform<T, C, D> as Mul<Rotation<T, D>>>::Output

Performs the * operation. Read more
source§

impl<T, C, const D: usize> Mul<Rotation<T, D>> for Transform<T, C, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: Rotation<T, D>, ) -> <Transform<T, C, D> as Mul<Rotation<T, D>>>::Output

Performs the * operation. Read more
source§

impl<'a, T, C, R, const D: usize> Mul<Similarity<T, R, D>> for &'a Transform<T, C, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: Similarity<T, R, D>, ) -> <&'a Transform<T, C, D> as Mul<Similarity<T, R, D>>>::Output

Performs the * operation. Read more
source§

impl<T, C, R, const D: usize> Mul<Similarity<T, R, D>> for Transform<T, C, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: Similarity<T, R, D>, ) -> <Transform<T, C, D> as Mul<Similarity<T, R, D>>>::Output

Performs the * operation. Read more
source§

impl<'a, T, C> Mul<Transform<T, C, 2>> for &'a Unit<Complex<T>>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, 2>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: Transform<T, C, 2>, ) -> <&'a Unit<Complex<T>> as Mul<Transform<T, C, 2>>>::Output

Performs the * operation. Read more
source§

impl<T, C> Mul<Transform<T, C, 2>> for Unit<Complex<T>>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, 2>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: Transform<T, C, 2>, ) -> <Unit<Complex<T>> as Mul<Transform<T, C, 2>>>::Output

Performs the * operation. Read more
source§

impl<'a, T, C> Mul<Transform<T, C, 3>> for &'a Unit<Quaternion<T>>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, 3>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: Transform<T, C, 3>, ) -> <&'a Unit<Quaternion<T>> as Mul<Transform<T, C, 3>>>::Output

Performs the * operation. Read more
source§

impl<T, C> Mul<Transform<T, C, 3>> for Unit<Quaternion<T>>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, 3>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: Transform<T, C, 3>, ) -> <Unit<Quaternion<T>> as Mul<Transform<T, C, 3>>>::Output

Performs the * operation. Read more
source§

impl<'a, T, C, R, const D: usize> Mul<Transform<T, C, D>> for &'a Isometry<T, R, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: Transform<T, C, D>, ) -> <&'a Isometry<T, R, D> as Mul<Transform<T, C, D>>>::Output

Performs the * operation. Read more
source§

impl<'a, T, C, const D: usize> Mul<Transform<T, C, D>> for &'a Rotation<T, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: Transform<T, C, D>, ) -> <&'a Rotation<T, D> as Mul<Transform<T, C, D>>>::Output

Performs the * operation. Read more
source§

impl<'a, T, C, R, const D: usize> Mul<Transform<T, C, D>> for &'a Similarity<T, R, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: Transform<T, C, D>, ) -> <&'a Similarity<T, R, D> as Mul<Transform<T, C, D>>>::Output

Performs the * operation. Read more
source§

impl<'a, T, C, const D: usize> Mul<Transform<T, C, D>> for &'a Translation<T, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: Transform<T, C, D>, ) -> <&'a Translation<T, D> as Mul<Transform<T, C, D>>>::Output

Performs the * operation. Read more
source§

impl<T, C, R, const D: usize> Mul<Transform<T, C, D>> for Isometry<T, R, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: Transform<T, C, D>, ) -> <Isometry<T, R, D> as Mul<Transform<T, C, D>>>::Output

Performs the * operation. Read more
source§

impl<T, C, const D: usize> Mul<Transform<T, C, D>> for Rotation<T, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: Transform<T, C, D>, ) -> <Rotation<T, D> as Mul<Transform<T, C, D>>>::Output

Performs the * operation. Read more
source§

impl<T, C, R, const D: usize> Mul<Transform<T, C, D>> for Similarity<T, R, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: Transform<T, C, D>, ) -> <Similarity<T, R, D> as Mul<Transform<T, C, D>>>::Output

Performs the * operation. Read more
source§

impl<T, C, const D: usize> Mul<Transform<T, C, D>> for Translation<T, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: Transform<T, C, D>, ) -> <Translation<T, D> as Mul<Transform<T, C, D>>>::Output

Performs the * operation. Read more
source§

impl<'a, T, CA, CB, const D: usize> Mul<Transform<T, CB, D>> for &'a Transform<T, CA, D>

§

type Output = Transform<T, <CA as TCategoryMul<CB>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: Transform<T, CB, D>, ) -> <&'a Transform<T, CA, D> as Mul<Transform<T, CB, D>>>::Output

Performs the * operation. Read more
source§

impl<T, CA, CB, const D: usize> Mul<Transform<T, CB, D>> for Transform<T, CA, D>

§

type Output = Transform<T, <CA as TCategoryMul<CB>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: Transform<T, CB, D>, ) -> <Transform<T, CA, D> as Mul<Transform<T, CB, D>>>::Output

Performs the * operation. Read more
source§

impl<'a, T, C, const D: usize> Mul<Translation<T, D>> for &'a Transform<T, C, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: Translation<T, D>, ) -> <&'a Transform<T, C, D> as Mul<Translation<T, D>>>::Output

Performs the * operation. Read more
source§

impl<T, C, const D: usize> Mul<Translation<T, D>> for Transform<T, C, D>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: Translation<T, D>, ) -> <Transform<T, C, D> as Mul<Translation<T, D>>>::Output

Performs the * operation. Read more
source§

impl<'a, T, C> Mul<Unit<Complex<T>>> for &'a Transform<T, C, 2>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, 2>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: Unit<Complex<T>>, ) -> <&'a Transform<T, C, 2> as Mul<Unit<Complex<T>>>>::Output

Performs the * operation. Read more
source§

impl<T, C> Mul<Unit<Complex<T>>> for Transform<T, C, 2>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, 2>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: Unit<Complex<T>>, ) -> <Transform<T, C, 2> as Mul<Unit<Complex<T>>>>::Output

Performs the * operation. Read more
source§

impl<'a, T, C> Mul<Unit<Quaternion<T>>> for &'a Transform<T, C, 3>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, 3>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: Unit<Quaternion<T>>, ) -> <&'a Transform<T, C, 3> as Mul<Unit<Quaternion<T>>>>::Output

Performs the * operation. Read more
source§

impl<T, C> Mul<Unit<Quaternion<T>>> for Transform<T, C, 3>

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, 3>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: Unit<Quaternion<T>>, ) -> <Transform<T, C, 3> as Mul<Unit<Quaternion<T>>>>::Output

Performs the * operation. Read more
source§

impl<'b, T, C, R, const D: usize> MulAssign<&'b Isometry<T, R, D>> for Transform<T, C, D>

source§

fn mul_assign(&mut self, rhs: &'b Isometry<T, R, D>)

Performs the *= operation. Read more
source§

impl<'b, T, C, const D: usize> MulAssign<&'b Rotation<T, D>> for Transform<T, C, D>

source§

fn mul_assign(&mut self, rhs: &'b Rotation<T, D>)

Performs the *= operation. Read more
source§

impl<'b, T, C, R, const D: usize> MulAssign<&'b Similarity<T, R, D>> for Transform<T, C, D>

source§

fn mul_assign(&mut self, rhs: &'b Similarity<T, R, D>)

Performs the *= operation. Read more
source§

impl<'b, T, CA, CB, const D: usize> MulAssign<&'b Transform<T, CB, D>> for Transform<T, CA, D>

source§

fn mul_assign(&mut self, rhs: &'b Transform<T, CB, D>)

Performs the *= operation. Read more
source§

impl<'b, T, C, const D: usize> MulAssign<&'b Translation<T, D>> for Transform<T, C, D>

source§

fn mul_assign(&mut self, rhs: &'b Translation<T, D>)

Performs the *= operation. Read more
source§

impl<'b, T, C> MulAssign<&'b Unit<Complex<T>>> for Transform<T, C, 2>

source§

fn mul_assign(&mut self, rhs: &'b Unit<Complex<T>>)

Performs the *= operation. Read more
source§

impl<'b, T, C> MulAssign<&'b Unit<Quaternion<T>>> for Transform<T, C, 3>

source§

fn mul_assign(&mut self, rhs: &'b Unit<Quaternion<T>>)

Performs the *= operation. Read more
source§

impl<T, C, R, const D: usize> MulAssign<Isometry<T, R, D>> for Transform<T, C, D>

source§

fn mul_assign(&mut self, rhs: Isometry<T, R, D>)

Performs the *= operation. Read more
source§

impl<T, C, const D: usize> MulAssign<Rotation<T, D>> for Transform<T, C, D>

source§

fn mul_assign(&mut self, rhs: Rotation<T, D>)

Performs the *= operation. Read more
source§

impl<T, C, R, const D: usize> MulAssign<Similarity<T, R, D>> for Transform<T, C, D>

source§

fn mul_assign(&mut self, rhs: Similarity<T, R, D>)

Performs the *= operation. Read more
source§

impl<T, CA, CB, const D: usize> MulAssign<Transform<T, CB, D>> for Transform<T, CA, D>

source§

fn mul_assign(&mut self, rhs: Transform<T, CB, D>)

Performs the *= operation. Read more
source§

impl<T, C, const D: usize> MulAssign<Translation<T, D>> for Transform<T, C, D>

source§

fn mul_assign(&mut self, rhs: Translation<T, D>)

Performs the *= operation. Read more
source§

impl<T, C> MulAssign<Unit<Complex<T>>> for Transform<T, C, 2>

source§

fn mul_assign(&mut self, rhs: Unit<Complex<T>>)

Performs the *= operation. Read more
source§

impl<T, C> MulAssign<Unit<Quaternion<T>>> for Transform<T, C, 3>

source§

fn mul_assign(&mut self, rhs: Unit<Quaternion<T>>)

Performs the *= operation. Read more
source§

impl<T, C, const D: usize> One for Transform<T, C, D>

source§

fn one() -> Transform<T, C, D>

Creates a new identity transform.

source§

fn set_one(&mut self)

Sets self to the multiplicative identity element of Self, 1.
source§

fn is_one(&self) -> bool
where Self: PartialEq,

Returns true if self is equal to the multiplicative identity. Read more
source§

impl<T, C, const D: usize> PartialEq for Transform<T, C, D>

source§

fn eq(&self, right: &Transform<T, C, D>) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<T, C, const D: usize> RelativeEq for Transform<T, C, D>
where T: RealField, C: TCategory, Const<D>: DimNameAdd<Const<1>>, <T as AbsDiffEq>::Epsilon: Clone, DefaultAllocator: Allocator<T, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>,

source§

fn default_max_relative() -> <Transform<T, C, D> as AbsDiffEq>::Epsilon

The default relative tolerance for testing values that are far-apart. Read more
source§

fn relative_eq( &self, other: &Transform<T, C, D>, epsilon: <Transform<T, C, D> as AbsDiffEq>::Epsilon, max_relative: <Transform<T, C, D> as AbsDiffEq>::Epsilon, ) -> bool

A test for equality that uses a relative comparison if the values are far apart.
§

fn relative_ne( &self, other: &Rhs, epsilon: Self::Epsilon, max_relative: Self::Epsilon, ) -> bool

The inverse of [RelativeEq::relative_eq].
source§

impl<T, C, const D: usize> SimdValue for Transform<T, C, D>

§

type Element = Transform<<T as SimdValue>::Element, C, D>

The type of the elements of each lane of this SIMD value.
§

type SimdBool = <T as SimdValue>::SimdBool

Type of the result of comparing two SIMD values like self.
source§

fn lanes() -> usize

The number of lanes of this SIMD value.
source§

fn splat(val: <Transform<T, C, D> as SimdValue>::Element) -> Transform<T, C, D>

Initializes an SIMD value with each lanes set to val.
source§

fn extract(&self, i: usize) -> <Transform<T, C, D> as SimdValue>::Element

Extracts the i-th lane of self. Read more
source§

unsafe fn extract_unchecked( &self, i: usize, ) -> <Transform<T, C, D> as SimdValue>::Element

Extracts the i-th lane of self without bound-checking.
source§

fn replace(&mut self, i: usize, val: <Transform<T, C, D> as SimdValue>::Element)

Replaces the i-th lane of self by val. Read more
source§

unsafe fn replace_unchecked( &mut self, i: usize, val: <Transform<T, C, D> as SimdValue>::Element, )

Replaces the i-th lane of self by val without bound-checking.
source§

fn select( self, cond: <Transform<T, C, D> as SimdValue>::SimdBool, other: Transform<T, C, D>, ) -> Transform<T, C, D>

Merges self and other depending on the lanes of cond. Read more
§

fn map_lanes(self, f: impl Fn(Self::Element) -> Self::Element) -> Self
where Self: Clone,

Applies a function to each lane of self. Read more
§

fn zip_map_lanes( self, b: Self, f: impl Fn(Self::Element, Self::Element) -> Self::Element, ) -> Self
where Self: Clone,

Applies a function to each lane of self paired with the corresponding lane of b. Read more
source§

impl<T1, T2, C, const D: usize> SubsetOf<Matrix<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output, <DefaultAllocator as Allocator<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>>::Buffer>> for Transform<T1, C, D>
where T1: RealField + SubsetOf<T2>, T2: RealField, C: TCategory, Const<D>: DimNameAdd<Const<1>>, DefaultAllocator: Allocator<T1, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output> + Allocator<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>, <T1 as AbsDiffEq>::Epsilon: Copy, <T2 as AbsDiffEq>::Epsilon: Copy,

source§

fn to_superset( &self, ) -> Matrix<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output, <DefaultAllocator as Allocator<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>>::Buffer>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset( m: &Matrix<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output, <DefaultAllocator as Allocator<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>>::Buffer>, ) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked( m: &Matrix<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output, <DefaultAllocator as Allocator<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>>::Buffer>, ) -> Transform<T1, C, D>

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T1, T2, C> SubsetOf<Transform<T2, C, 2>> for Unit<Complex<T1>>
where T1: RealField, T2: RealField + SupersetOf<T1>, C: SuperTCategoryOf<TAffine>,

source§

fn to_superset(&self) -> Transform<T2, C, 2>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset(t: &Transform<T2, C, 2>) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked(t: &Transform<T2, C, 2>) -> Unit<Complex<T1>>

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T1, T2, C> SubsetOf<Transform<T2, C, 3>> for Unit<DualQuaternion<T1>>
where T1: RealField, T2: RealField + SupersetOf<T1>, C: SuperTCategoryOf<TAffine>,

source§

fn to_superset(&self) -> Transform<T2, C, 3>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset(t: &Transform<T2, C, 3>) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked(t: &Transform<T2, C, 3>) -> Unit<DualQuaternion<T1>>

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T1, T2, C> SubsetOf<Transform<T2, C, 3>> for Unit<Quaternion<T1>>
where T1: RealField, T2: RealField + SupersetOf<T1>, C: SuperTCategoryOf<TAffine>,

source§

fn to_superset(&self) -> Transform<T2, C, 3>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset(t: &Transform<T2, C, 3>) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked(t: &Transform<T2, C, 3>) -> Unit<Quaternion<T1>>

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T1, T2, R, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Isometry<T1, R, D>
where T1: RealField, T2: RealField + SupersetOf<T1>, C: SuperTCategoryOf<TAffine>, R: AbstractRotation<T1, D> + SubsetOf<Matrix<T1, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output, <DefaultAllocator as Allocator<T1, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>>::Buffer>> + SubsetOf<Matrix<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output, <DefaultAllocator as Allocator<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>>::Buffer>>, Const<D>: DimNameAdd<Const<1>> + DimMin<Const<D>, Output = Const<D>>, DefaultAllocator: Allocator<T1, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output> + Allocator<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>,

source§

fn to_superset(&self) -> Transform<T2, C, D>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset(t: &Transform<T2, C, D>) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked(t: &Transform<T2, C, D>) -> Isometry<T1, R, D>

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T1, T2, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Rotation<T1, D>
where T1: RealField, T2: RealField + SupersetOf<T1>, C: SuperTCategoryOf<TAffine>, Const<D>: DimNameAdd<Const<1>> + DimMin<Const<D>, Output = Const<D>>, DefaultAllocator: Allocator<T1, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output> + Allocator<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>,

source§

fn to_superset(&self) -> Transform<T2, C, D>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset(t: &Transform<T2, C, D>) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked(t: &Transform<T2, C, D>) -> Rotation<T1, D>

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T1, T2, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Scale<T1, D>
where T1: RealField, T2: RealField + SupersetOf<T1>, C: SuperTCategoryOf<TAffine>, Const<D>: DimNameAdd<Const<1>>, DefaultAllocator: Allocator<T1, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output> + Allocator<T1, <Const<D> as DimNameAdd<Const<1>>>::Output> + Allocator<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>,

source§

fn to_superset(&self) -> Transform<T2, C, D>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset(t: &Transform<T2, C, D>) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked(t: &Transform<T2, C, D>) -> Scale<T1, D>

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T1, T2, R, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Similarity<T1, R, D>
where T1: RealField, T2: RealField + SupersetOf<T1>, C: SuperTCategoryOf<TAffine>, R: AbstractRotation<T1, D> + SubsetOf<Matrix<T1, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output, <DefaultAllocator as Allocator<T1, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>>::Buffer>> + SubsetOf<Matrix<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output, <DefaultAllocator as Allocator<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>>::Buffer>>, Const<D>: DimNameAdd<Const<1>> + DimMin<Const<D>, Output = Const<D>>, DefaultAllocator: Allocator<T1, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output> + Allocator<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>,

source§

fn to_superset(&self) -> Transform<T2, C, D>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset(t: &Transform<T2, C, D>) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked(t: &Transform<T2, C, D>) -> Similarity<T1, R, D>

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T1, T2, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Translation<T1, D>
where T1: RealField, T2: RealField + SupersetOf<T1>, C: SuperTCategoryOf<TAffine>, Const<D>: DimNameAdd<Const<1>>, DefaultAllocator: Allocator<T1, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output> + Allocator<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>,

source§

fn to_superset(&self) -> Transform<T2, C, D>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset(t: &Transform<T2, C, D>) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked(t: &Transform<T2, C, D>) -> Translation<T1, D>

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T1, T2, C1, C2, const D: usize> SubsetOf<Transform<T2, C2, D>> for Transform<T1, C1, D>
where T1: RealField + SubsetOf<T2>, T2: RealField, C1: TCategory, C2: SuperTCategoryOf<C1>, Const<D>: DimNameAdd<Const<1>>, DefaultAllocator: Allocator<T1, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output> + Allocator<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>, <T1 as AbsDiffEq>::Epsilon: Copy, <T2 as AbsDiffEq>::Epsilon: Copy,

source§

fn to_superset(&self) -> Transform<T2, C2, D>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset(t: &Transform<T2, C2, D>) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked(t: &Transform<T2, C2, D>) -> Transform<T1, C1, D>

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T, C, const D: usize> UlpsEq for Transform<T, C, D>
where T: RealField, C: TCategory, Const<D>: DimNameAdd<Const<1>>, <T as AbsDiffEq>::Epsilon: Clone, DefaultAllocator: Allocator<T, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>,

source§

fn default_max_ulps() -> u32

The default ULPs to tolerate when testing values that are far-apart. Read more
source§

fn ulps_eq( &self, other: &Transform<T, C, D>, epsilon: <Transform<T, C, D> as AbsDiffEq>::Epsilon, max_ulps: u32, ) -> bool

A test for equality that uses units in the last place (ULP) if the values are far apart.
§

fn ulps_ne(&self, other: &Rhs, epsilon: Self::Epsilon, max_ulps: u32) -> bool

The inverse of [UlpsEq::ulps_eq].
source§

impl<T, C, const D: usize> Copy for Transform<T, C, D>

source§

impl<T, C, const D: usize> Eq for Transform<T, C, D>

Auto Trait Implementations§

§

impl<T, C, const D: usize> !Freeze for Transform<T, C, D>

§

impl<T, C, const D: usize> !RefUnwindSafe for Transform<T, C, D>

§

impl<T, C, const D: usize> !Send for Transform<T, C, D>

§

impl<T, C, const D: usize> !Sync for Transform<T, C, D>

§

impl<T, C, const D: usize> !Unpin for Transform<T, C, D>

§

impl<T, C, const D: usize> !UnwindSafe for Transform<T, C, D>

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
§

impl<T> AnyEq for T
where T: Any + PartialEq,

§

fn equals(&self, other: &(dyn Any + 'static)) -> bool

§

fn as_any(&self) -> &(dyn Any + 'static)

§

impl<T, U> AsBindGroupShaderType<U> for T
where U: ShaderType, &'a T: for<'a> Into<U>,

§

fn as_bind_group_shader_type(&self, _images: &RenderAssets<Image>) -> U

Return the T [ShaderType] for self. When used in [AsBindGroup] derives, it is safe to assume that all images in self exist.
§

impl<'a, T, E> AsTaggedExplicit<'a, E> for T
where T: 'a,

§

fn explicit(self, class: Class, tag: u32) -> TaggedParser<'a, Explicit, Self, E>

§

impl<'a, T, E> AsTaggedImplicit<'a, E> for T
where T: 'a,

§

fn implicit( self, class: Class, constructed: bool, tag: u32, ) -> TaggedParser<'a, Implicit, Self, E>

source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> CloneToUninit for T
where T: Copy,

source§

unsafe fn clone_to_uninit(&self, dst: *mut T)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
source§

impl<T> CloneToUninit for T
where T: Clone,

source§

default unsafe fn clone_to_uninit(&self, dst: *mut T)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
§

impl<T> Conv for T

§

fn conv<T>(self) -> T
where Self: Into<T>,

Converts self into T using Into<T>. Read more
§

impl<T> Downcast<T> for T

§

fn downcast(&self) -> &T

§

impl<T> Downcast for T
where T: Any,

§

fn into_any(self: Box<T>) -> Box<dyn Any>

Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.
§

fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>

Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
§

fn as_any(&self) -> &(dyn Any + 'static)

Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
§

impl<T> DowncastSync for T
where T: Any + Send + Sync,

§

fn into_any_arc(self: Arc<T>) -> Arc<dyn Any + Send + Sync>

Convert Arc<Trait> (where Trait: Downcast) to Arc<Any>. Arc<Any> can then be further downcast into Arc<ConcreteType> where ConcreteType implements Trait.
source§

impl<T> DynClone for T
where T: Clone,

§

impl<T> DynEq for T
where T: Any + Eq,

§

fn as_any(&self) -> &(dyn Any + 'static)

Casts the type to dyn Any.
§

fn dyn_eq(&self, other: &(dyn DynEq + 'static)) -> bool

This method tests for self and other values to be equal. Read more
§

impl<T> DynHash for T
where T: DynEq + Hash,

§

fn as_dyn_eq(&self) -> &(dyn DynEq + 'static)

Casts the type to dyn Any.
§

fn dyn_hash(&self, state: &mut dyn Hasher)

Feeds this value into the given Hasher.
§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

§

fn equivalent(&self, key: &K) -> bool

Checks if this value is equivalent to the given key. Read more
§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

§

fn equivalent(&self, key: &K) -> bool

Compare self to key and return true if they are equal.
source§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

source§

fn equivalent(&self, key: &K) -> bool

Compare self to key and return true if they are equal.
§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

§

fn equivalent(&self, key: &K) -> bool

§

impl<T> FmtForward for T

§

fn fmt_binary(self) -> FmtBinary<Self>
where Self: Binary,

Causes self to use its Binary implementation when Debug-formatted.
§

fn fmt_display(self) -> FmtDisplay<Self>
where Self: Display,

Causes self to use its Display implementation when Debug-formatted.
§

fn fmt_lower_exp(self) -> FmtLowerExp<Self>
where Self: LowerExp,

Causes self to use its LowerExp implementation when Debug-formatted.
§

fn fmt_lower_hex(self) -> FmtLowerHex<Self>
where Self: LowerHex,

Causes self to use its LowerHex implementation when Debug-formatted.
§

fn fmt_octal(self) -> FmtOctal<Self>
where Self: Octal,

Causes self to use its Octal implementation when Debug-formatted.
§

fn fmt_pointer(self) -> FmtPointer<Self>
where Self: Pointer,

Causes self to use its Pointer implementation when Debug-formatted.
§

fn fmt_upper_exp(self) -> FmtUpperExp<Self>
where Self: UpperExp,

Causes self to use its UpperExp implementation when Debug-formatted.
§

fn fmt_upper_hex(self) -> FmtUpperHex<Self>
where Self: UpperHex,

Causes self to use its UpperHex implementation when Debug-formatted.
§

fn fmt_list(self) -> FmtList<Self>
where &'a Self: for<'a> IntoIterator,

Formats each item in a sequence. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<S> FromSample<S> for S

§

fn from_sample_(s: S) -> S

§

impl<T> FromWorld for T
where T: Default,

§

fn from_world(_world: &mut World) -> T

Creates Self using data from the given [World]
§

impl<T> FromWorld for T
where T: Default,

§

fn from_world(_world: &World) -> T

Creates Self using data from the given World.
§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided [Span], returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> IntoEither for T

source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
§

impl<F, T> IntoSample<T> for F
where T: FromSample<F>,

§

fn into_sample(self) -> T

§

impl<T> One for T
where T: One,

§

fn one() -> T

§

impl<T> Pipe for T
where T: ?Sized,

§

fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> R
where Self: Sized,

Pipes by value. This is generally the method you want to use. Read more
§

fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> R
where R: 'a,

Borrows self and passes that borrow into the pipe function. Read more
§

fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> R
where R: 'a,

Mutably borrows self and passes that borrow into the pipe function. Read more
§

fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
where Self: Borrow<B>, B: 'a + ?Sized, R: 'a,

Borrows self, then passes self.borrow() into the pipe function. Read more
§

fn pipe_borrow_mut<'a, B, R>( &'a mut self, func: impl FnOnce(&'a mut B) -> R, ) -> R
where Self: BorrowMut<B>, B: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.borrow_mut() into the pipe function. Read more
§

fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
where Self: AsRef<U>, U: 'a + ?Sized, R: 'a,

Borrows self, then passes self.as_ref() into the pipe function.
§

fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
where Self: AsMut<U>, U: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.as_mut() into the pipe function.
§

fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
where Self: Deref<Target = T>, T: 'a + ?Sized, R: 'a,

Borrows self, then passes self.deref() into the pipe function.
§

fn pipe_deref_mut<'a, T, R>( &'a mut self, func: impl FnOnce(&'a mut T) -> R, ) -> R
where Self: DerefMut<Target = T> + Deref, T: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.deref_mut() into the pipe function.
§

impl<T> Pointable for T

§

const ALIGN: usize = _

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
§

impl<T> RawClone for T
where T: Clone,

§

unsafe fn raw_clone(src: *const c_void, dst: *mut c_void)

Write the default value of the type to the pointer. Read more
§

fn raw_clone_cb() -> Unsafe<&'static (dyn Fn(*const c_void, *mut c_void) + Send + Sync)>

Get a callback suitable for [SchemaData].
§

impl<T> RawDefault for T
where T: Default,

§

unsafe fn raw_default(dst: *mut c_void)

Write the default value of the type to the pointer. Read more
§

fn raw_default_cb() -> Unsafe<&'static (dyn Fn(*mut c_void) + Send + Sync)>

Get a callback suitable for [SchemaData].
§

impl<T> RawDrop for T

§

unsafe fn raw_drop(ptr: *mut c_void)

Write the default value of the type to the pointer. Read more
§

fn raw_drop_cb() -> Unsafe<&'static (dyn Fn(*mut c_void) + Send + Sync)>

Get a callback suitable for [SchemaData].
§

impl<T> RawEq for T
where T: Eq,

§

unsafe fn raw_eq(a: *const c_void, b: *const c_void) -> bool

Get the hash of the type. Read more
§

fn raw_eq_cb() -> Unsafe<&'static (dyn Fn(*const c_void, *const c_void) -> bool + Send + Sync)>

Get a callback suitable for [SchemaData].
§

impl<T> RawHash for T
where T: Hash,

§

unsafe fn raw_hash(ptr: *const c_void) -> u64

Get the hash of the type. Read more
§

fn raw_hash_cb() -> Unsafe<&'static (dyn Fn(*const c_void) -> u64 + Send + Sync)>

Get a callback suitable for [SchemaData].
source§

impl<T> Same for T

§

type Output = T

Should always be Self
§

impl<'gc, T> Singleton<'gc> for T
where T: Default,

§

fn create(_: Context<'gc>) -> T

§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
§

impl<T> Tap for T

§

fn tap(self, func: impl FnOnce(&Self)) -> Self

Immutable access to a value. Read more
§

fn tap_mut(self, func: impl FnOnce(&mut Self)) -> Self

Mutable access to a value. Read more
§

fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Immutable access to the Borrow<B> of a value. Read more
§

fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Mutable access to the BorrowMut<B> of a value. Read more
§

fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Immutable access to the AsRef<R> view of a value. Read more
§

fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Mutable access to the AsMut<R> view of a value. Read more
§

fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Immutable access to the Deref::Target of a value. Read more
§

fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Mutable access to the Deref::Target of a value. Read more
§

fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self

Calls .tap() only in debug builds, and is erased in release builds.
§

fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self

Calls .tap_mut() only in debug builds, and is erased in release builds.
§

fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Calls .tap_borrow() only in debug builds, and is erased in release builds.
§

fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Calls .tap_borrow_mut() only in debug builds, and is erased in release builds.
§

fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Calls .tap_ref() only in debug builds, and is erased in release builds.
§

fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Calls .tap_ref_mut() only in debug builds, and is erased in release builds.
§

fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Calls .tap_deref() only in debug builds, and is erased in release builds.
§

fn tap_deref_mut_dbg<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Calls .tap_deref_mut() only in debug builds, and is erased in release builds.
source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
§

impl<T, U> ToSample<U> for T
where U: FromSample<T>,

§

fn to_sample_(self) -> U

§

impl<T> TryConv for T

§

fn try_conv<T>(self) -> Result<T, Self::Error>
where Self: TryInto<T>,

Attempts to convert self into T using TryInto<T>. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<T> TypeData for T
where T: 'static + Send + Sync + Clone,

§

fn clone_type_data(&self) -> Box<dyn TypeData>

§

impl<T> Upcast<T> for T

§

fn upcast(&self) -> Option<&T>

§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

impl<T, Right> ClosedDiv<Right> for T
where T: Div<Right, Output = T> + DivAssign<Right>,

§

impl<T, Right> ClosedMul<Right> for T
where T: Mul<Right, Output = T> + MulAssign<Right>,

§

impl<S, T> Duplex<S> for T
where T: FromSample<S> + ToSample<S>,

source§

impl<T> Scalar for T
where T: 'static + Clone + PartialEq + Debug,

§

impl<T> SerializableAny for T
where T: 'static + Any + Clone + for<'a> Send + Sync,