#[repr(C)]pub struct Quaternion<T> {
pub coords: Matrix<T, Const<4>, Const<1>, ArrayStorage<T, 4, 1>>,
}
Expand description
A quaternion. See the type alias UnitQuaternion = Unit<Quaternion>
for a quaternion
that may be used as a rotation.
Fields§
§coords: Matrix<T, Const<4>, Const<1>, ArrayStorage<T, 4, 1>>
This quaternion as a 4D vector of coordinates in the [ x, y, z, w ]
storage order.
Implementations§
source§impl<T> Quaternion<T>
impl<T> Quaternion<T>
sourcepub fn into_owned(self) -> Quaternion<T>
👎Deprecated: This method is a no-op and will be removed in a future release.
pub fn into_owned(self) -> Quaternion<T>
Moves this unit quaternion into one that owns its data.
sourcepub fn clone_owned(&self) -> Quaternion<T>
👎Deprecated: This method is a no-op and will be removed in a future release.
pub fn clone_owned(&self) -> Quaternion<T>
Clones this unit quaternion into one that owns its data.
sourcepub fn normalize(&self) -> Quaternion<T>
pub fn normalize(&self) -> Quaternion<T>
Normalizes this quaternion.
§Example
let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let q_normalized = q.normalize();
relative_eq!(q_normalized.norm(), 1.0);
sourcepub fn imag(&self) -> Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>
pub fn imag(&self) -> Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>
The imaginary part of this quaternion.
sourcepub fn conjugate(&self) -> Quaternion<T>
pub fn conjugate(&self) -> Quaternion<T>
The conjugate of this quaternion.
§Example
let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let conj = q.conjugate();
assert!(conj.i == -2.0 && conj.j == -3.0 && conj.k == -4.0 && conj.w == 1.0);
sourcepub fn lerp(&self, other: &Quaternion<T>, t: T) -> Quaternion<T>
pub fn lerp(&self, other: &Quaternion<T>, t: T) -> Quaternion<T>
Linear interpolation between two quaternion.
Computes self * (1 - t) + other * t
.
§Example
let q1 = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let q2 = Quaternion::new(10.0, 20.0, 30.0, 40.0);
assert_eq!(q1.lerp(&q2, 0.1), Quaternion::new(1.9, 3.8, 5.7, 7.6));
sourcepub fn vector(
&self,
) -> Matrix<T, Const<3>, Const<1>, ViewStorage<'_, T, Const<3>, Const<1>, <<DefaultAllocator as Allocator<T, Const<4>>>::Buffer as RawStorage<T, Const<4>>>::RStride, <<DefaultAllocator as Allocator<T, Const<4>>>::Buffer as RawStorage<T, Const<4>>>::CStride>>
pub fn vector( &self, ) -> Matrix<T, Const<3>, Const<1>, ViewStorage<'_, T, Const<3>, Const<1>, <<DefaultAllocator as Allocator<T, Const<4>>>::Buffer as RawStorage<T, Const<4>>>::RStride, <<DefaultAllocator as Allocator<T, Const<4>>>::Buffer as RawStorage<T, Const<4>>>::CStride>>
The vector part (i, j, k)
of this quaternion.
§Example
let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
assert_eq!(q.vector()[0], 2.0);
assert_eq!(q.vector()[1], 3.0);
assert_eq!(q.vector()[2], 4.0);
sourcepub fn scalar(&self) -> T
pub fn scalar(&self) -> T
The scalar part w
of this quaternion.
§Example
let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
assert_eq!(q.scalar(), 1.0);
sourcepub fn as_vector(&self) -> &Matrix<T, Const<4>, Const<1>, ArrayStorage<T, 4, 1>>
pub fn as_vector(&self) -> &Matrix<T, Const<4>, Const<1>, ArrayStorage<T, 4, 1>>
Reinterprets this quaternion as a 4D vector.
§Example
let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
// Recall that the quaternion is stored internally as (i, j, k, w)
// while the crate::new constructor takes the arguments as (w, i, j, k).
assert_eq!(*q.as_vector(), Vector4::new(2.0, 3.0, 4.0, 1.0));
sourcepub fn norm(&self) -> T
pub fn norm(&self) -> T
The norm of this quaternion.
§Example
let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
assert_relative_eq!(q.norm(), 5.47722557, epsilon = 1.0e-6);
sourcepub fn magnitude(&self) -> T
pub fn magnitude(&self) -> T
A synonym for the norm of this quaternion.
Aka the length.
This is the same as .norm()
§Example
let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
assert_relative_eq!(q.magnitude(), 5.47722557, epsilon = 1.0e-6);
sourcepub fn norm_squared(&self) -> T
pub fn norm_squared(&self) -> T
The squared norm of this quaternion.
§Example
let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
assert_eq!(q.magnitude_squared(), 30.0);
sourcepub fn magnitude_squared(&self) -> T
pub fn magnitude_squared(&self) -> T
A synonym for the squared norm of this quaternion.
Aka the squared length.
This is the same as .norm_squared()
§Example
let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
assert_eq!(q.magnitude_squared(), 30.0);
sourcepub fn dot(&self, rhs: &Quaternion<T>) -> T
pub fn dot(&self, rhs: &Quaternion<T>) -> T
The dot product of two quaternions.
§Example
let q1 = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let q2 = Quaternion::new(5.0, 6.0, 7.0, 8.0);
assert_eq!(q1.dot(&q2), 70.0);
source§impl<T> Quaternion<T>
impl<T> Quaternion<T>
sourcepub fn try_inverse(&self) -> Option<Quaternion<T>>where
T: RealField,
pub fn try_inverse(&self) -> Option<Quaternion<T>>where
T: RealField,
Inverts this quaternion if it is not zero.
This method also does not works with SIMD components (see simd_try_inverse
instead).
§Example
let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let inv_q = q.try_inverse();
assert!(inv_q.is_some());
assert_relative_eq!(inv_q.unwrap() * q, Quaternion::identity());
//Non-invertible case
let q = Quaternion::new(0.0, 0.0, 0.0, 0.0);
let inv_q = q.try_inverse();
assert!(inv_q.is_none());
sourcepub fn simd_try_inverse(&self) -> SimdOption<Quaternion<T>>
pub fn simd_try_inverse(&self) -> SimdOption<Quaternion<T>>
Attempt to inverse this quaternion.
This method also works with SIMD components.
sourcepub fn inner(&self, other: &Quaternion<T>) -> Quaternion<T>
pub fn inner(&self, other: &Quaternion<T>) -> Quaternion<T>
Calculates the inner product (also known as the dot product). See “Foundations of Game Engine Development, Volume 1: Mathematics” by Lengyel Formula 4.89.
§Example
let a = Quaternion::new(0.0, 2.0, 3.0, 4.0);
let b = Quaternion::new(0.0, 5.0, 2.0, 1.0);
let expected = Quaternion::new(-20.0, 0.0, 0.0, 0.0);
let result = a.inner(&b);
assert_relative_eq!(expected, result, epsilon = 1.0e-5);
sourcepub fn outer(&self, other: &Quaternion<T>) -> Quaternion<T>
pub fn outer(&self, other: &Quaternion<T>) -> Quaternion<T>
Calculates the outer product (also known as the wedge product). See “Foundations of Game Engine Development, Volume 1: Mathematics” by Lengyel Formula 4.89.
§Example
let a = Quaternion::new(0.0, 2.0, 3.0, 4.0);
let b = Quaternion::new(0.0, 5.0, 2.0, 1.0);
let expected = Quaternion::new(0.0, -5.0, 18.0, -11.0);
let result = a.outer(&b);
assert_relative_eq!(expected, result, epsilon = 1.0e-5);
sourcepub fn project(&self, other: &Quaternion<T>) -> Option<Quaternion<T>>where
T: RealField,
pub fn project(&self, other: &Quaternion<T>) -> Option<Quaternion<T>>where
T: RealField,
Calculates the projection of self
onto other
(also known as the parallel).
See “Foundations of Game Engine Development, Volume 1: Mathematics” by Lengyel
Formula 4.94.
§Example
let a = Quaternion::new(0.0, 2.0, 3.0, 4.0);
let b = Quaternion::new(0.0, 5.0, 2.0, 1.0);
let expected = Quaternion::new(0.0, 3.333333333333333, 1.3333333333333333, 0.6666666666666666);
let result = a.project(&b).unwrap();
assert_relative_eq!(expected, result, epsilon = 1.0e-5);
sourcepub fn reject(&self, other: &Quaternion<T>) -> Option<Quaternion<T>>where
T: RealField,
pub fn reject(&self, other: &Quaternion<T>) -> Option<Quaternion<T>>where
T: RealField,
Calculates the rejection of self
from other
(also known as the perpendicular).
See “Foundations of Game Engine Development, Volume 1: Mathematics” by Lengyel
Formula 4.94.
§Example
let a = Quaternion::new(0.0, 2.0, 3.0, 4.0);
let b = Quaternion::new(0.0, 5.0, 2.0, 1.0);
let expected = Quaternion::new(0.0, -1.3333333333333333, 1.6666666666666665, 3.3333333333333335);
let result = a.reject(&b).unwrap();
assert_relative_eq!(expected, result, epsilon = 1.0e-5);
sourcepub fn polar_decomposition(
&self,
) -> (T, T, Option<Unit<Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>>>)where
T: RealField,
pub fn polar_decomposition(
&self,
) -> (T, T, Option<Unit<Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>>>)where
T: RealField,
The polar decomposition of this quaternion.
Returns, from left to right: the quaternion norm, the half rotation angle, the rotation
axis. If the rotation angle is zero, the rotation axis is set to None
.
§Example
let q = Quaternion::new(0.0, 5.0, 0.0, 0.0);
let (norm, half_ang, axis) = q.polar_decomposition();
assert_eq!(norm, 5.0);
assert_eq!(half_ang, f32::consts::FRAC_PI_2);
assert_eq!(axis, Some(Vector3::x_axis()));
sourcepub fn ln(&self) -> Quaternion<T>
pub fn ln(&self) -> Quaternion<T>
Compute the natural logarithm of a quaternion.
§Example
let q = Quaternion::new(2.0, 5.0, 0.0, 0.0);
assert_relative_eq!(q.ln(), Quaternion::new(1.683647, 1.190289, 0.0, 0.0), epsilon = 1.0e-6)
sourcepub fn exp(&self) -> Quaternion<T>
pub fn exp(&self) -> Quaternion<T>
Compute the exponential of a quaternion.
§Example
let q = Quaternion::new(1.683647, 1.190289, 0.0, 0.0);
assert_relative_eq!(q.exp(), Quaternion::new(2.0, 5.0, 0.0, 0.0), epsilon = 1.0e-5)
sourcepub fn exp_eps(&self, eps: T) -> Quaternion<T>
pub fn exp_eps(&self, eps: T) -> Quaternion<T>
Compute the exponential of a quaternion. Returns the identity if the vector part of this quaternion
has a norm smaller than eps
.
§Example
let q = Quaternion::new(1.683647, 1.190289, 0.0, 0.0);
assert_relative_eq!(q.exp_eps(1.0e-6), Quaternion::new(2.0, 5.0, 0.0, 0.0), epsilon = 1.0e-5);
// Singular case.
let q = Quaternion::new(0.0000001, 0.0, 0.0, 0.0);
assert_eq!(q.exp_eps(1.0e-6), Quaternion::identity());
sourcepub fn powf(&self, n: T) -> Quaternion<T>
pub fn powf(&self, n: T) -> Quaternion<T>
Raise the quaternion to a given floating power.
§Example
let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
assert_relative_eq!(q.powf(1.5), Quaternion::new( -6.2576659, 4.1549037, 6.2323556, 8.3098075), epsilon = 1.0e-6);
sourcepub fn as_vector_mut(
&mut self,
) -> &mut Matrix<T, Const<4>, Const<1>, ArrayStorage<T, 4, 1>>
pub fn as_vector_mut( &mut self, ) -> &mut Matrix<T, Const<4>, Const<1>, ArrayStorage<T, 4, 1>>
Transforms this quaternion into its 4D vector form (Vector part, Scalar part).
§Example
let mut q = Quaternion::identity();
*q.as_vector_mut() = Vector4::new(1.0, 2.0, 3.0, 4.0);
assert!(q.i == 1.0 && q.j == 2.0 && q.k == 3.0 && q.w == 4.0);
sourcepub fn vector_mut(
&mut self,
) -> Matrix<T, Const<3>, Const<1>, ViewStorageMut<'_, T, Const<3>, Const<1>, <<DefaultAllocator as Allocator<T, Const<4>>>::Buffer as RawStorage<T, Const<4>>>::RStride, <<DefaultAllocator as Allocator<T, Const<4>>>::Buffer as RawStorage<T, Const<4>>>::CStride>>
pub fn vector_mut( &mut self, ) -> Matrix<T, Const<3>, Const<1>, ViewStorageMut<'_, T, Const<3>, Const<1>, <<DefaultAllocator as Allocator<T, Const<4>>>::Buffer as RawStorage<T, Const<4>>>::RStride, <<DefaultAllocator as Allocator<T, Const<4>>>::Buffer as RawStorage<T, Const<4>>>::CStride>>
The mutable vector part (i, j, k)
of this quaternion.
§Example
let mut q = Quaternion::identity();
{
let mut v = q.vector_mut();
v[0] = 2.0;
v[1] = 3.0;
v[2] = 4.0;
}
assert!(q.i == 2.0 && q.j == 3.0 && q.k == 4.0 && q.w == 1.0);
sourcepub fn conjugate_mut(&mut self)
pub fn conjugate_mut(&mut self)
Replaces this quaternion by its conjugate.
§Example
let mut q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
q.conjugate_mut();
assert!(q.i == -2.0 && q.j == -3.0 && q.k == -4.0 && q.w == 1.0);
sourcepub fn try_inverse_mut(&mut self) -> <T as SimdValue>::SimdBool
pub fn try_inverse_mut(&mut self) -> <T as SimdValue>::SimdBool
Inverts this quaternion in-place if it is not zero.
§Example
let mut q = Quaternion::new(1.0f32, 2.0, 3.0, 4.0);
assert!(q.try_inverse_mut());
assert_relative_eq!(q * Quaternion::new(1.0, 2.0, 3.0, 4.0), Quaternion::identity());
//Non-invertible case
let mut q = Quaternion::new(0.0f32, 0.0, 0.0, 0.0);
assert!(!q.try_inverse_mut());
sourcepub fn normalize_mut(&mut self) -> T
pub fn normalize_mut(&mut self) -> T
Normalizes this quaternion.
§Example
let mut q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
q.normalize_mut();
assert_relative_eq!(q.norm(), 1.0);
sourcepub fn squared(&self) -> Quaternion<T>
pub fn squared(&self) -> Quaternion<T>
Calculates square of a quaternion.
sourcepub fn half(&self) -> Quaternion<T>
pub fn half(&self) -> Quaternion<T>
Divides quaternion into two.
sourcepub fn sqrt(&self) -> Quaternion<T>
pub fn sqrt(&self) -> Quaternion<T>
Calculates square root.
sourcepub fn is_pure(&self) -> bool
pub fn is_pure(&self) -> bool
Check if the quaternion is pure.
A quaternion is pure if it has no real part (self.w == 0.0
).
sourcepub fn pure(&self) -> Quaternion<T>
pub fn pure(&self) -> Quaternion<T>
Convert quaternion to pure quaternion.
sourcepub fn left_div(&self, other: &Quaternion<T>) -> Option<Quaternion<T>>where
T: RealField,
pub fn left_div(&self, other: &Quaternion<T>) -> Option<Quaternion<T>>where
T: RealField,
Left quaternionic division.
Calculates B-1 * A where A = self, B = other.
sourcepub fn right_div(&self, other: &Quaternion<T>) -> Option<Quaternion<T>>where
T: RealField,
pub fn right_div(&self, other: &Quaternion<T>) -> Option<Quaternion<T>>where
T: RealField,
Right quaternionic division.
Calculates A * B-1 where A = self, B = other.
§Example
let a = Quaternion::new(0.0, 1.0, 2.0, 3.0);
let b = Quaternion::new(0.0, 5.0, 2.0, 1.0);
let result = a.right_div(&b).unwrap();
let expected = Quaternion::new(0.4, 0.13333333333333336, -0.4666666666666667, 0.26666666666666666);
assert_relative_eq!(expected, result, epsilon = 1.0e-7);
sourcepub fn cos(&self) -> Quaternion<T>
pub fn cos(&self) -> Quaternion<T>
Calculates the quaternionic cosinus.
§Example
let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let expected = Quaternion::new(58.93364616794395, -34.086183690465596, -51.1292755356984, -68.17236738093119);
let result = input.cos();
assert_relative_eq!(expected, result, epsilon = 1.0e-7);
sourcepub fn acos(&self) -> Quaternion<T>
pub fn acos(&self) -> Quaternion<T>
Calculates the quaternionic arccosinus.
§Example
let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let result = input.cos().acos();
assert_relative_eq!(input, result, epsilon = 1.0e-7);
sourcepub fn sin(&self) -> Quaternion<T>
pub fn sin(&self) -> Quaternion<T>
Calculates the quaternionic sinus.
§Example
let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let expected = Quaternion::new(91.78371578403467, 21.886486853029176, 32.82973027954377, 43.77297370605835);
let result = input.sin();
assert_relative_eq!(expected, result, epsilon = 1.0e-7);
sourcepub fn asin(&self) -> Quaternion<T>
pub fn asin(&self) -> Quaternion<T>
Calculates the quaternionic arcsinus.
§Example
let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let result = input.sin().asin();
assert_relative_eq!(input, result, epsilon = 1.0e-7);
sourcepub fn tan(&self) -> Quaternion<T>where
T: RealField,
pub fn tan(&self) -> Quaternion<T>where
T: RealField,
Calculates the quaternionic tangent.
§Example
let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let expected = Quaternion::new(0.00003821631725009489, 0.3713971716439371, 0.5570957574659058, 0.7427943432878743);
let result = input.tan();
assert_relative_eq!(expected, result, epsilon = 1.0e-7);
sourcepub fn atan(&self) -> Quaternion<T>where
T: RealField,
pub fn atan(&self) -> Quaternion<T>where
T: RealField,
Calculates the quaternionic arctangent.
§Example
let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let result = input.tan().atan();
assert_relative_eq!(input, result, epsilon = 1.0e-7);
sourcepub fn sinh(&self) -> Quaternion<T>
pub fn sinh(&self) -> Quaternion<T>
Calculates the hyperbolic quaternionic sinus.
§Example
let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let expected = Quaternion::new(0.7323376060463428, -0.4482074499805421, -0.6723111749708133, -0.8964148999610843);
let result = input.sinh();
assert_relative_eq!(expected, result, epsilon = 1.0e-7);
sourcepub fn asinh(&self) -> Quaternion<T>
pub fn asinh(&self) -> Quaternion<T>
Calculates the hyperbolic quaternionic arcsinus.
§Example
let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let expected = Quaternion::new(2.385889902585242, 0.514052600662788, 0.7710789009941821, 1.028105201325576);
let result = input.asinh();
assert_relative_eq!(expected, result, epsilon = 1.0e-7);
sourcepub fn cosh(&self) -> Quaternion<T>
pub fn cosh(&self) -> Quaternion<T>
Calculates the hyperbolic quaternionic cosinus.
§Example
let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let expected = Quaternion::new(0.9615851176369566, -0.3413521745610167, -0.5120282618415251, -0.6827043491220334);
let result = input.cosh();
assert_relative_eq!(expected, result, epsilon = 1.0e-7);
sourcepub fn acosh(&self) -> Quaternion<T>
pub fn acosh(&self) -> Quaternion<T>
Calculates the hyperbolic quaternionic arccosinus.
§Example
let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let expected = Quaternion::new(2.4014472020074007, 0.5162761016176176, 0.7744141524264264, 1.0325522032352352);
let result = input.acosh();
assert_relative_eq!(expected, result, epsilon = 1.0e-7);
sourcepub fn tanh(&self) -> Quaternion<T>where
T: RealField,
pub fn tanh(&self) -> Quaternion<T>where
T: RealField,
Calculates the hyperbolic quaternionic tangent.
§Example
let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let expected = Quaternion::new(1.0248695360556623, -0.10229568178876419, -0.1534435226831464, -0.20459136357752844);
let result = input.tanh();
assert_relative_eq!(expected, result, epsilon = 1.0e-7);
sourcepub fn atanh(&self) -> Quaternion<T>
pub fn atanh(&self) -> Quaternion<T>
Calculates the hyperbolic quaternionic arctangent.
§Example
let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let expected = Quaternion::new(0.03230293287000163, 0.5173453683196951, 0.7760180524795426, 1.0346907366393903);
let result = input.atanh();
assert_relative_eq!(expected, result, epsilon = 1.0e-7);
source§impl<T> Quaternion<T>
impl<T> Quaternion<T>
sourcepub const fn from_vector(
vector: Matrix<T, Const<4>, Const<1>, ArrayStorage<T, 4, 1>>,
) -> Quaternion<T>
pub const fn from_vector( vector: Matrix<T, Const<4>, Const<1>, ArrayStorage<T, 4, 1>>, ) -> Quaternion<T>
Creates a quaternion from a 4D vector. The quaternion scalar part corresponds to the w
vector component.
sourcepub const fn new(w: T, i: T, j: T, k: T) -> Quaternion<T>
pub const fn new(w: T, i: T, j: T, k: T) -> Quaternion<T>
Creates a new quaternion from its individual components. Note that the arguments order does not follow the storage order.
The storage order is [ i, j, k, w ]
while the arguments for this functions are in the
order (w, i, j, k)
.
§Example
let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
assert!(q.i == 2.0 && q.j == 3.0 && q.k == 4.0 && q.w == 1.0);
assert_eq!(*q.as_vector(), Vector4::new(2.0, 3.0, 4.0, 1.0));
source§impl<T> Quaternion<T>where
T: SimdRealField,
impl<T> Quaternion<T>where
T: SimdRealField,
sourcepub fn from_imag(
vector: Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>,
) -> Quaternion<T>
pub fn from_imag( vector: Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>, ) -> Quaternion<T>
Constructs a pure quaternion.
sourcepub fn from_parts<SB>(
scalar: T,
vector: Matrix<T, Const<3>, Const<1>, SB>,
) -> Quaternion<T>
pub fn from_parts<SB>( scalar: T, vector: Matrix<T, Const<3>, Const<1>, SB>, ) -> Quaternion<T>
Creates a new quaternion from its scalar and vector parts. Note that the arguments order does not follow the storage order.
The storage order is [ vector, scalar ].
§Example
let w = 1.0;
let ijk = Vector3::new(2.0, 3.0, 4.0);
let q = Quaternion::from_parts(w, ijk);
assert!(q.i == 2.0 && q.j == 3.0 && q.k == 4.0 && q.w == 1.0);
assert_eq!(*q.as_vector(), Vector4::new(2.0, 3.0, 4.0, 1.0));
sourcepub fn from_real(r: T) -> Quaternion<T>
pub fn from_real(r: T) -> Quaternion<T>
Constructs a real quaternion.
sourcepub fn identity() -> Quaternion<T>
pub fn identity() -> Quaternion<T>
The quaternion multiplicative identity.
§Example
let q = Quaternion::identity();
let q2 = Quaternion::new(1.0, 2.0, 3.0, 4.0);
assert_eq!(q * q2, q2);
assert_eq!(q2 * q, q2);
source§impl<T> Quaternion<T>
impl<T> Quaternion<T>
sourcepub fn from_polar_decomposition<SB>(
scale: T,
theta: T,
axis: Unit<Matrix<T, Const<3>, Const<1>, SB>>,
) -> Quaternion<T>
pub fn from_polar_decomposition<SB>( scale: T, theta: T, axis: Unit<Matrix<T, Const<3>, Const<1>, SB>>, ) -> Quaternion<T>
Creates a new quaternion from its polar decomposition.
Note that axis
is assumed to be a unit vector.
Trait Implementations§
source§impl<T> AbsDiffEq for Quaternion<T>where
T: RealField<Epsilon = T> + AbsDiffEq,
impl<T> AbsDiffEq for Quaternion<T>where
T: RealField<Epsilon = T> + AbsDiffEq,
source§fn default_epsilon() -> <Quaternion<T> as AbsDiffEq>::Epsilon
fn default_epsilon() -> <Quaternion<T> as AbsDiffEq>::Epsilon
source§fn abs_diff_eq(
&self,
other: &Quaternion<T>,
epsilon: <Quaternion<T> as AbsDiffEq>::Epsilon,
) -> bool
fn abs_diff_eq( &self, other: &Quaternion<T>, epsilon: <Quaternion<T> as AbsDiffEq>::Epsilon, ) -> bool
§fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
AbsDiffEq::abs_diff_eq
].source§impl<'a, 'b, T> Add<&'b Quaternion<T>> for &'a Quaternion<T>
impl<'a, 'b, T> Add<&'b Quaternion<T>> for &'a Quaternion<T>
§type Output = Quaternion<T>
type Output = Quaternion<T>
+
operator.source§fn add(
self,
rhs: &'b Quaternion<T>,
) -> <&'a Quaternion<T> as Add<&'b Quaternion<T>>>::Output
fn add( self, rhs: &'b Quaternion<T>, ) -> <&'a Quaternion<T> as Add<&'b Quaternion<T>>>::Output
+
operation. Read moresource§impl<'b, T> Add<&'b Quaternion<T>> for Quaternion<T>
impl<'b, T> Add<&'b Quaternion<T>> for Quaternion<T>
§type Output = Quaternion<T>
type Output = Quaternion<T>
+
operator.source§fn add(
self,
rhs: &'b Quaternion<T>,
) -> <Quaternion<T> as Add<&'b Quaternion<T>>>::Output
fn add( self, rhs: &'b Quaternion<T>, ) -> <Quaternion<T> as Add<&'b Quaternion<T>>>::Output
+
operation. Read moresource§impl<'a, T> Add<Quaternion<T>> for &'a Quaternion<T>
impl<'a, T> Add<Quaternion<T>> for &'a Quaternion<T>
§type Output = Quaternion<T>
type Output = Quaternion<T>
+
operator.source§fn add(
self,
rhs: Quaternion<T>,
) -> <&'a Quaternion<T> as Add<Quaternion<T>>>::Output
fn add( self, rhs: Quaternion<T>, ) -> <&'a Quaternion<T> as Add<Quaternion<T>>>::Output
+
operation. Read moresource§impl<T> Add for Quaternion<T>
impl<T> Add for Quaternion<T>
§type Output = Quaternion<T>
type Output = Quaternion<T>
+
operator.source§fn add(self, rhs: Quaternion<T>) -> <Quaternion<T> as Add>::Output
fn add(self, rhs: Quaternion<T>) -> <Quaternion<T> as Add>::Output
+
operation. Read moresource§impl<'b, T> AddAssign<&'b Quaternion<T>> for Quaternion<T>
impl<'b, T> AddAssign<&'b Quaternion<T>> for Quaternion<T>
source§fn add_assign(&mut self, rhs: &'b Quaternion<T>)
fn add_assign(&mut self, rhs: &'b Quaternion<T>)
+=
operation. Read moresource§impl<T> AddAssign for Quaternion<T>
impl<T> AddAssign for Quaternion<T>
source§fn add_assign(&mut self, rhs: Quaternion<T>)
fn add_assign(&mut self, rhs: Quaternion<T>)
+=
operation. Read moresource§impl<T> Clone for Quaternion<T>where
T: Clone,
impl<T> Clone for Quaternion<T>where
T: Clone,
source§fn clone(&self) -> Quaternion<T>
fn clone(&self) -> Quaternion<T>
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl<T> Debug for Quaternion<T>where
T: Debug,
impl<T> Debug for Quaternion<T>where
T: Debug,
source§impl<T> Default for Quaternion<T>
impl<T> Default for Quaternion<T>
source§fn default() -> Quaternion<T>
fn default() -> Quaternion<T>
source§impl<T> Deref for Quaternion<T>
impl<T> Deref for Quaternion<T>
source§impl<T> DerefMut for Quaternion<T>
impl<T> DerefMut for Quaternion<T>
source§impl<T> Display for Quaternion<T>
impl<T> Display for Quaternion<T>
source§impl<'a, T> Div<T> for &'a Quaternion<T>
impl<'a, T> Div<T> for &'a Quaternion<T>
§type Output = Quaternion<T>
type Output = Quaternion<T>
/
operator.source§impl<T> Div<T> for Quaternion<T>
impl<T> Div<T> for Quaternion<T>
§type Output = Quaternion<T>
type Output = Quaternion<T>
/
operator.source§impl<T> DivAssign<T> for Quaternion<T>
impl<T> DivAssign<T> for Quaternion<T>
source§fn div_assign(&mut self, n: T)
fn div_assign(&mut self, n: T)
/=
operation. Read moresource§impl<T> From<[Quaternion<<T as SimdValue>::Element>; 16]> for Quaternion<T>
impl<T> From<[Quaternion<<T as SimdValue>::Element>; 16]> for Quaternion<T>
source§fn from(arr: [Quaternion<<T as SimdValue>::Element>; 16]) -> Quaternion<T>
fn from(arr: [Quaternion<<T as SimdValue>::Element>; 16]) -> Quaternion<T>
source§impl<T> From<[Quaternion<<T as SimdValue>::Element>; 2]> for Quaternion<T>
impl<T> From<[Quaternion<<T as SimdValue>::Element>; 2]> for Quaternion<T>
source§fn from(arr: [Quaternion<<T as SimdValue>::Element>; 2]) -> Quaternion<T>
fn from(arr: [Quaternion<<T as SimdValue>::Element>; 2]) -> Quaternion<T>
source§impl<T> From<[Quaternion<<T as SimdValue>::Element>; 4]> for Quaternion<T>
impl<T> From<[Quaternion<<T as SimdValue>::Element>; 4]> for Quaternion<T>
source§fn from(arr: [Quaternion<<T as SimdValue>::Element>; 4]) -> Quaternion<T>
fn from(arr: [Quaternion<<T as SimdValue>::Element>; 4]) -> Quaternion<T>
source§impl<T> From<[Quaternion<<T as SimdValue>::Element>; 8]> for Quaternion<T>
impl<T> From<[Quaternion<<T as SimdValue>::Element>; 8]> for Quaternion<T>
source§fn from(arr: [Quaternion<<T as SimdValue>::Element>; 8]) -> Quaternion<T>
fn from(arr: [Quaternion<<T as SimdValue>::Element>; 8]) -> Quaternion<T>
source§impl<T> From<[T; 4]> for Quaternion<T>where
T: Scalar,
impl<T> From<[T; 4]> for Quaternion<T>where
T: Scalar,
source§fn from(coords: [T; 4]) -> Quaternion<T>
fn from(coords: [T; 4]) -> Quaternion<T>
source§impl<T> From<Matrix<T, Const<4>, Const<1>, ArrayStorage<T, 4, 1>>> for Quaternion<T>where
T: Scalar,
impl<T> From<Matrix<T, Const<4>, Const<1>, ArrayStorage<T, 4, 1>>> for Quaternion<T>where
T: Scalar,
source§fn from(
coords: Matrix<T, Const<4>, Const<1>, ArrayStorage<T, 4, 1>>,
) -> Quaternion<T>
fn from( coords: Matrix<T, Const<4>, Const<1>, ArrayStorage<T, 4, 1>>, ) -> Quaternion<T>
source§impl<T> Hash for Quaternion<T>
impl<T> Hash for Quaternion<T>
source§impl<'a, 'b, T> Mul<&'b Quaternion<T>> for &'a Quaternion<T>
impl<'a, 'b, T> Mul<&'b Quaternion<T>> for &'a Quaternion<T>
§type Output = Quaternion<T>
type Output = Quaternion<T>
*
operator.source§fn mul(
self,
rhs: &'b Quaternion<T>,
) -> <&'a Quaternion<T> as Mul<&'b Quaternion<T>>>::Output
fn mul( self, rhs: &'b Quaternion<T>, ) -> <&'a Quaternion<T> as Mul<&'b Quaternion<T>>>::Output
*
operation. Read moresource§impl<'b, T> Mul<&'b Quaternion<T>> for Quaternion<T>
impl<'b, T> Mul<&'b Quaternion<T>> for Quaternion<T>
§type Output = Quaternion<T>
type Output = Quaternion<T>
*
operator.source§fn mul(
self,
rhs: &'b Quaternion<T>,
) -> <Quaternion<T> as Mul<&'b Quaternion<T>>>::Output
fn mul( self, rhs: &'b Quaternion<T>, ) -> <Quaternion<T> as Mul<&'b Quaternion<T>>>::Output
*
operation. Read moresource§impl<'a, T> Mul<Quaternion<T>> for &'a Quaternion<T>
impl<'a, T> Mul<Quaternion<T>> for &'a Quaternion<T>
§type Output = Quaternion<T>
type Output = Quaternion<T>
*
operator.source§fn mul(
self,
rhs: Quaternion<T>,
) -> <&'a Quaternion<T> as Mul<Quaternion<T>>>::Output
fn mul( self, rhs: Quaternion<T>, ) -> <&'a Quaternion<T> as Mul<Quaternion<T>>>::Output
*
operation. Read moresource§impl<'a, T> Mul<T> for &'a Quaternion<T>
impl<'a, T> Mul<T> for &'a Quaternion<T>
§type Output = Quaternion<T>
type Output = Quaternion<T>
*
operator.source§impl<T> Mul<T> for Quaternion<T>
impl<T> Mul<T> for Quaternion<T>
§type Output = Quaternion<T>
type Output = Quaternion<T>
*
operator.source§impl<T> Mul for Quaternion<T>
impl<T> Mul for Quaternion<T>
§type Output = Quaternion<T>
type Output = Quaternion<T>
*
operator.source§fn mul(self, rhs: Quaternion<T>) -> <Quaternion<T> as Mul>::Output
fn mul(self, rhs: Quaternion<T>) -> <Quaternion<T> as Mul>::Output
*
operation. Read moresource§impl<'b, T> MulAssign<&'b Quaternion<T>> for Quaternion<T>
impl<'b, T> MulAssign<&'b Quaternion<T>> for Quaternion<T>
source§fn mul_assign(&mut self, rhs: &'b Quaternion<T>)
fn mul_assign(&mut self, rhs: &'b Quaternion<T>)
*=
operation. Read moresource§impl<T> MulAssign<T> for Quaternion<T>
impl<T> MulAssign<T> for Quaternion<T>
source§fn mul_assign(&mut self, n: T)
fn mul_assign(&mut self, n: T)
*=
operation. Read moresource§impl<T> MulAssign for Quaternion<T>
impl<T> MulAssign for Quaternion<T>
source§fn mul_assign(&mut self, rhs: Quaternion<T>)
fn mul_assign(&mut self, rhs: Quaternion<T>)
*=
operation. Read moresource§impl<'a, T> Neg for &'a Quaternion<T>
impl<'a, T> Neg for &'a Quaternion<T>
§type Output = Quaternion<T>
type Output = Quaternion<T>
-
operator.source§impl<T> Neg for Quaternion<T>
impl<T> Neg for Quaternion<T>
§type Output = Quaternion<T>
type Output = Quaternion<T>
-
operator.source§impl<T> Normed for Quaternion<T>where
T: SimdRealField,
impl<T> Normed for Quaternion<T>where
T: SimdRealField,
§type Norm = <T as SimdComplexField>::SimdRealField
type Norm = <T as SimdComplexField>::SimdRealField
source§fn norm(&self) -> <T as SimdComplexField>::SimdRealField
fn norm(&self) -> <T as SimdComplexField>::SimdRealField
source§fn norm_squared(&self) -> <T as SimdComplexField>::SimdRealField
fn norm_squared(&self) -> <T as SimdComplexField>::SimdRealField
source§fn unscale_mut(&mut self, n: <Quaternion<T> as Normed>::Norm)
fn unscale_mut(&mut self, n: <Quaternion<T> as Normed>::Norm)
self
by n.source§impl<T> One for Quaternion<T>
impl<T> One for Quaternion<T>
source§fn one() -> Quaternion<T>
fn one() -> Quaternion<T>
source§impl<T> PartialEq for Quaternion<T>where
T: Scalar,
impl<T> PartialEq for Quaternion<T>where
T: Scalar,
source§fn eq(&self, right: &Quaternion<T>) -> bool
fn eq(&self, right: &Quaternion<T>) -> bool
self
and other
values to be equal, and is used
by ==
.source§impl<T> RelativeEq for Quaternion<T>where
T: RealField<Epsilon = T> + RelativeEq,
impl<T> RelativeEq for Quaternion<T>where
T: RealField<Epsilon = T> + RelativeEq,
source§fn default_max_relative() -> <Quaternion<T> as AbsDiffEq>::Epsilon
fn default_max_relative() -> <Quaternion<T> as AbsDiffEq>::Epsilon
source§fn relative_eq(
&self,
other: &Quaternion<T>,
epsilon: <Quaternion<T> as AbsDiffEq>::Epsilon,
max_relative: <Quaternion<T> as AbsDiffEq>::Epsilon,
) -> bool
fn relative_eq( &self, other: &Quaternion<T>, epsilon: <Quaternion<T> as AbsDiffEq>::Epsilon, max_relative: <Quaternion<T> as AbsDiffEq>::Epsilon, ) -> bool
§fn relative_ne(
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool
fn relative_ne( &self, other: &Rhs, epsilon: Self::Epsilon, max_relative: Self::Epsilon, ) -> bool
RelativeEq::relative_eq
].source§impl<T> SimdValue for Quaternion<T>
impl<T> SimdValue for Quaternion<T>
§type Element = Quaternion<<T as SimdValue>::Element>
type Element = Quaternion<<T as SimdValue>::Element>
§type SimdBool = <T as SimdValue>::SimdBool
type SimdBool = <T as SimdValue>::SimdBool
self
.source§fn splat(val: <Quaternion<T> as SimdValue>::Element) -> Quaternion<T>
fn splat(val: <Quaternion<T> as SimdValue>::Element) -> Quaternion<T>
val
.source§fn extract(&self, i: usize) -> <Quaternion<T> as SimdValue>::Element
fn extract(&self, i: usize) -> <Quaternion<T> as SimdValue>::Element
self
. Read moresource§unsafe fn extract_unchecked(
&self,
i: usize,
) -> <Quaternion<T> as SimdValue>::Element
unsafe fn extract_unchecked( &self, i: usize, ) -> <Quaternion<T> as SimdValue>::Element
self
without bound-checking.source§unsafe fn replace_unchecked(
&mut self,
i: usize,
val: <Quaternion<T> as SimdValue>::Element,
)
unsafe fn replace_unchecked( &mut self, i: usize, val: <Quaternion<T> as SimdValue>::Element, )
self
by val
without bound-checking.source§fn select(
self,
cond: <Quaternion<T> as SimdValue>::SimdBool,
other: Quaternion<T>,
) -> Quaternion<T>
fn select( self, cond: <Quaternion<T> as SimdValue>::SimdBool, other: Quaternion<T>, ) -> Quaternion<T>
source§impl<'a, 'b, T> Sub<&'b Quaternion<T>> for &'a Quaternion<T>
impl<'a, 'b, T> Sub<&'b Quaternion<T>> for &'a Quaternion<T>
§type Output = Quaternion<T>
type Output = Quaternion<T>
-
operator.source§fn sub(
self,
rhs: &'b Quaternion<T>,
) -> <&'a Quaternion<T> as Sub<&'b Quaternion<T>>>::Output
fn sub( self, rhs: &'b Quaternion<T>, ) -> <&'a Quaternion<T> as Sub<&'b Quaternion<T>>>::Output
-
operation. Read moresource§impl<'b, T> Sub<&'b Quaternion<T>> for Quaternion<T>
impl<'b, T> Sub<&'b Quaternion<T>> for Quaternion<T>
§type Output = Quaternion<T>
type Output = Quaternion<T>
-
operator.source§fn sub(
self,
rhs: &'b Quaternion<T>,
) -> <Quaternion<T> as Sub<&'b Quaternion<T>>>::Output
fn sub( self, rhs: &'b Quaternion<T>, ) -> <Quaternion<T> as Sub<&'b Quaternion<T>>>::Output
-
operation. Read moresource§impl<'a, T> Sub<Quaternion<T>> for &'a Quaternion<T>
impl<'a, T> Sub<Quaternion<T>> for &'a Quaternion<T>
§type Output = Quaternion<T>
type Output = Quaternion<T>
-
operator.source§fn sub(
self,
rhs: Quaternion<T>,
) -> <&'a Quaternion<T> as Sub<Quaternion<T>>>::Output
fn sub( self, rhs: Quaternion<T>, ) -> <&'a Quaternion<T> as Sub<Quaternion<T>>>::Output
-
operation. Read moresource§impl<T> Sub for Quaternion<T>
impl<T> Sub for Quaternion<T>
§type Output = Quaternion<T>
type Output = Quaternion<T>
-
operator.source§fn sub(self, rhs: Quaternion<T>) -> <Quaternion<T> as Sub>::Output
fn sub(self, rhs: Quaternion<T>) -> <Quaternion<T> as Sub>::Output
-
operation. Read moresource§impl<'b, T> SubAssign<&'b Quaternion<T>> for Quaternion<T>
impl<'b, T> SubAssign<&'b Quaternion<T>> for Quaternion<T>
source§fn sub_assign(&mut self, rhs: &'b Quaternion<T>)
fn sub_assign(&mut self, rhs: &'b Quaternion<T>)
-=
operation. Read moresource§impl<T> SubAssign for Quaternion<T>
impl<T> SubAssign for Quaternion<T>
source§fn sub_assign(&mut self, rhs: Quaternion<T>)
fn sub_assign(&mut self, rhs: Quaternion<T>)
-=
operation. Read moresource§impl<T1, T2> SubsetOf<Quaternion<T2>> for Quaternion<T1>
impl<T1, T2> SubsetOf<Quaternion<T2>> for Quaternion<T1>
source§fn to_superset(&self) -> Quaternion<T2>
fn to_superset(&self) -> Quaternion<T2>
self
to the equivalent element of its superset.source§fn is_in_subset(q: &Quaternion<T2>) -> bool
fn is_in_subset(q: &Quaternion<T2>) -> bool
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(q: &Quaternion<T2>) -> Quaternion<T1>
fn from_superset_unchecked(q: &Quaternion<T2>) -> Quaternion<T1>
self.to_superset
but without any property checks. Always succeeds.§fn from_superset(element: &T) -> Option<Self>
fn from_superset(element: &T) -> Option<Self>
self
from the equivalent element of its
superset. Read moresource§impl<T> UlpsEq for Quaternion<T>where
T: RealField<Epsilon = T> + UlpsEq,
impl<T> UlpsEq for Quaternion<T>where
T: RealField<Epsilon = T> + UlpsEq,
source§fn default_max_ulps() -> u32
fn default_max_ulps() -> u32
source§fn ulps_eq(
&self,
other: &Quaternion<T>,
epsilon: <Quaternion<T> as AbsDiffEq>::Epsilon,
max_ulps: u32,
) -> bool
fn ulps_eq( &self, other: &Quaternion<T>, epsilon: <Quaternion<T> as AbsDiffEq>::Epsilon, max_ulps: u32, ) -> bool
source§impl<T> Zero for Quaternion<T>
impl<T> Zero for Quaternion<T>
impl<T> Copy for Quaternion<T>where
T: Copy,
impl<T> Eq for Quaternion<T>
Auto Trait Implementations§
impl<T> Freeze for Quaternion<T>where
T: Freeze,
impl<T> RefUnwindSafe for Quaternion<T>where
T: RefUnwindSafe,
impl<T> Send for Quaternion<T>where
T: Send,
impl<T> Sync for Quaternion<T>where
T: Sync,
impl<T> Unpin for Quaternion<T>where
T: Unpin,
impl<T> UnwindSafe for Quaternion<T>where
T: UnwindSafe,
Blanket Implementations§
§impl<T, U> AsBindGroupShaderType<U> for T
impl<T, U> AsBindGroupShaderType<U> for T
§fn as_bind_group_shader_type(&self, _images: &RenderAssets<Image>) -> U
fn as_bind_group_shader_type(&self, _images: &RenderAssets<Image>) -> U
T
[ShaderType
] for self
. When used in [AsBindGroup
]
derives, it is safe to assume that all images in self
exist.§impl<'a, T, E> AsTaggedExplicit<'a, E> for Twhere
T: 'a,
impl<'a, T, E> AsTaggedExplicit<'a, E> for Twhere
T: 'a,
§impl<'a, T, E> AsTaggedImplicit<'a, E> for Twhere
T: 'a,
impl<'a, T, E> AsTaggedImplicit<'a, E> for Twhere
T: 'a,
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> CloneToUninit for Twhere
T: Copy,
impl<T> CloneToUninit for Twhere
T: Copy,
source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§default unsafe fn clone_to_uninit(&self, dst: *mut T)
default unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)§impl<T> Conv for T
impl<T> Conv for T
§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
. Box<dyn Any>
can
then be further downcast
into Box<ConcreteType>
where ConcreteType
implements Trait
.§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
. Rc<Any>
can then be
further downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
.§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
&Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s.§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s.§impl<T> DowncastSync for T
impl<T> DowncastSync for T
§impl<T> DynEq for T
impl<T> DynEq for T
§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
key
and return true
if they are equal.source§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
source§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
key
and return true
if they are equal.§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
fn equivalent(&self, key: &K) -> bool
§impl<T> FmtForward for T
impl<T> FmtForward for T
§fn fmt_binary(self) -> FmtBinary<Self>where
Self: Binary,
fn fmt_binary(self) -> FmtBinary<Self>where
Self: Binary,
self
to use its Binary
implementation when Debug
-formatted.§fn fmt_display(self) -> FmtDisplay<Self>where
Self: Display,
fn fmt_display(self) -> FmtDisplay<Self>where
Self: Display,
self
to use its Display
implementation when
Debug
-formatted.§fn fmt_lower_exp(self) -> FmtLowerExp<Self>where
Self: LowerExp,
fn fmt_lower_exp(self) -> FmtLowerExp<Self>where
Self: LowerExp,
self
to use its LowerExp
implementation when
Debug
-formatted.§fn fmt_lower_hex(self) -> FmtLowerHex<Self>where
Self: LowerHex,
fn fmt_lower_hex(self) -> FmtLowerHex<Self>where
Self: LowerHex,
self
to use its LowerHex
implementation when
Debug
-formatted.§fn fmt_octal(self) -> FmtOctal<Self>where
Self: Octal,
fn fmt_octal(self) -> FmtOctal<Self>where
Self: Octal,
self
to use its Octal
implementation when Debug
-formatted.§fn fmt_pointer(self) -> FmtPointer<Self>where
Self: Pointer,
fn fmt_pointer(self) -> FmtPointer<Self>where
Self: Pointer,
self
to use its Pointer
implementation when
Debug
-formatted.§fn fmt_upper_exp(self) -> FmtUpperExp<Self>where
Self: UpperExp,
fn fmt_upper_exp(self) -> FmtUpperExp<Self>where
Self: UpperExp,
self
to use its UpperExp
implementation when
Debug
-formatted.§fn fmt_upper_hex(self) -> FmtUpperHex<Self>where
Self: UpperHex,
fn fmt_upper_hex(self) -> FmtUpperHex<Self>where
Self: UpperHex,
self
to use its UpperHex
implementation when
Debug
-formatted.§fn fmt_list(self) -> FmtList<Self>where
&'a Self: for<'a> IntoIterator,
fn fmt_list(self) -> FmtList<Self>where
&'a Self: for<'a> IntoIterator,
§impl<S> FromSample<S> for S
impl<S> FromSample<S> for S
fn from_sample_(s: S) -> S
§impl<T> FromWorld for Twhere
T: Default,
impl<T> FromWorld for Twhere
T: Default,
§fn from_world(_world: &mut World) -> T
fn from_world(_world: &mut World) -> T
Self
using data from the given [World]§impl<T> FromWorld for Twhere
T: Default,
impl<T> FromWorld for Twhere
T: Default,
§fn from_world(_world: &World) -> T
fn from_world(_world: &World) -> T
Self
using data from the given World
.§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoEither for T
impl<T> IntoEither for T
source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moresource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more§impl<F, T> IntoSample<T> for Fwhere
T: FromSample<F>,
impl<F, T> IntoSample<T> for Fwhere
T: FromSample<F>,
fn into_sample(self) -> T
§impl<T> Pipe for Twhere
T: ?Sized,
impl<T> Pipe for Twhere
T: ?Sized,
§fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> Rwhere
Self: Sized,
fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> Rwhere
Self: Sized,
§fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> Rwhere
R: 'a,
fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> Rwhere
R: 'a,
self
and passes that borrow into the pipe function. Read more§fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> Rwhere
R: 'a,
fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> Rwhere
R: 'a,
self
and passes that borrow into the pipe function. Read more§fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
§fn pipe_borrow_mut<'a, B, R>(
&'a mut self,
func: impl FnOnce(&'a mut B) -> R,
) -> R
fn pipe_borrow_mut<'a, B, R>( &'a mut self, func: impl FnOnce(&'a mut B) -> R, ) -> R
§fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
self
, then passes self.as_ref()
into the pipe function.§fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
self
, then passes self.as_mut()
into the pipe
function.§fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
self
, then passes self.deref()
into the pipe function.§impl<T> Pointable for T
impl<T> Pointable for T
§impl<T> RawDefault for Twhere
T: Default,
impl<T> RawDefault for Twhere
T: Default,
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.§impl<T> Tap for T
impl<T> Tap for T
§fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
Borrow<B>
of a value. Read more§fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
BorrowMut<B>
of a value. Read more§fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
AsRef<R>
view of a value. Read more§fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
AsMut<R>
view of a value. Read more§fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
Deref::Target
of a value. Read more§fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
Deref::Target
of a value. Read more§fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self
fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self
.tap()
only in debug builds, and is erased in release builds.§fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self
fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self
.tap_mut()
only in debug builds, and is erased in release
builds.§fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
.tap_borrow()
only in debug builds, and is erased in release
builds.§fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
.tap_borrow_mut()
only in debug builds, and is erased in release
builds.§fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
.tap_ref()
only in debug builds, and is erased in release
builds.§fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
.tap_ref_mut()
only in debug builds, and is erased in release
builds.§fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
.tap_deref()
only in debug builds, and is erased in release
builds.