pub trait TurboRand: TurboCore + GenCore {
Show 35 methods
// Provided methods
fn u128(&self, bounds: impl RangeBounds<u128>) -> u128 { ... }
fn i128(&self, bounds: impl RangeBounds<i128>) -> i128 { ... }
fn u64(&self, bounds: impl RangeBounds<u64>) -> u64 { ... }
fn i64(&self, bounds: impl RangeBounds<i64>) -> i64 { ... }
fn u32(&self, bounds: impl RangeBounds<u32>) -> u32 { ... }
fn i32(&self, bounds: impl RangeBounds<i32>) -> i32 { ... }
fn u16(&self, bounds: impl RangeBounds<u16>) -> u16 { ... }
fn i16(&self, bounds: impl RangeBounds<i16>) -> i16 { ... }
fn u8(&self, bounds: impl RangeBounds<u8>) -> u8 { ... }
fn i8(&self, bounds: impl RangeBounds<i8>) -> i8 { ... }
fn usize(&self, bounds: impl RangeBounds<usize>) -> usize { ... }
fn isize(&self, bounds: impl RangeBounds<isize>) -> isize { ... }
fn f32(&self) -> f32 { ... }
fn f32_normalized(&self) -> f32 { ... }
fn f64(&self) -> f64 { ... }
fn f64_normalized(&self) -> f64 { ... }
fn index(&self, bound: impl RangeBounds<usize>) -> usize { ... }
fn bool(&self) -> bool { ... }
fn chance(&self, rate: f64) -> bool { ... }
fn sample<'a, T>(&self, list: &'a [T]) -> Option<&'a T> { ... }
fn sample_iter<T>(&self, list: T) -> Option<<T as Iterator>::Item>
where T: Iterator { ... }
fn sample_mut<'a, T>(&self, list: &'a mut [T]) -> Option<&'a mut T> { ... }
fn sample_multiple<'a, T>(&self, list: &'a [T], amount: usize) -> Vec<&'a T> { ... }
fn sample_multiple_mut<'a, T>(
&self,
list: &'a mut [T],
amount: usize,
) -> Vec<&'a mut T> { ... }
fn sample_multiple_iter<T>(
&self,
list: T,
amount: usize,
) -> Vec<<T as Iterator>::Item>
where T: Iterator { ... }
fn weighted_sample<'a, T, F>(
&self,
list: &'a [T],
weight_sampler: F,
) -> Option<&'a T>
where F: Fn((&T, usize)) -> f64 { ... }
fn weighted_sample_mut<'a, T, F>(
&self,
list: &'a mut [T],
weight_sampler: F,
) -> Option<&'a mut T>
where F: Fn((&T, usize)) -> f64 { ... }
fn shuffle<T>(&self, slice: &mut [T]) { ... }
fn partial_shuffle<'a, T>(
&self,
slice: &'a mut [T],
amount: usize,
) -> (&'a mut [T], &'a mut [T]) { ... }
fn alphabetic(&self) -> char { ... }
fn alphanumeric(&self) -> char { ... }
fn lowercase(&self) -> char { ... }
fn uppercase(&self) -> char { ... }
fn digit(&self, radix: u8) -> char { ... }
fn char(&self, bounds: impl RangeBounds<char>) -> char { ... }
}
Expand description
Extension trait for automatically implementing all TurboRand
methods,
as long as the struct implements [TurboCore
] & GenCore
. All methods
are provided as default implementations that build on top of [TurboCore
]
and GenCore
, and thus are not recommended to be overridden, lest you
potentially change the expected outcome of the methods.
Provided Methods§
fn u128(&self, bounds: impl RangeBounds<u128>) -> u128
fn u128(&self, bounds: impl RangeBounds<u128>) -> u128
fn i128(&self, bounds: impl RangeBounds<i128>) -> i128
fn i128(&self, bounds: impl RangeBounds<i128>) -> i128
fn u64(&self, bounds: impl RangeBounds<u64>) -> u64
fn u64(&self, bounds: impl RangeBounds<u64>) -> u64
fn i64(&self, bounds: impl RangeBounds<i64>) -> i64
fn i64(&self, bounds: impl RangeBounds<i64>) -> i64
fn u32(&self, bounds: impl RangeBounds<u32>) -> u32
fn u32(&self, bounds: impl RangeBounds<u32>) -> u32
fn i32(&self, bounds: impl RangeBounds<i32>) -> i32
fn i32(&self, bounds: impl RangeBounds<i32>) -> i32
fn u16(&self, bounds: impl RangeBounds<u16>) -> u16
fn u16(&self, bounds: impl RangeBounds<u16>) -> u16
fn i16(&self, bounds: impl RangeBounds<i16>) -> i16
fn i16(&self, bounds: impl RangeBounds<i16>) -> i16
fn u8(&self, bounds: impl RangeBounds<u8>) -> u8
fn u8(&self, bounds: impl RangeBounds<u8>) -> u8
fn i8(&self, bounds: impl RangeBounds<i8>) -> i8
fn i8(&self, bounds: impl RangeBounds<i8>) -> i8
fn usize(&self, bounds: impl RangeBounds<usize>) -> usize
fn usize(&self, bounds: impl RangeBounds<usize>) -> usize
fn isize(&self, bounds: impl RangeBounds<isize>) -> isize
fn isize(&self, bounds: impl RangeBounds<isize>) -> isize
fn f32_normalized(&self) -> f32
fn f32_normalized(&self) -> f32
Returns a random f32
value between -1.0
and 1.0
.
fn f64_normalized(&self) -> f64
fn f64_normalized(&self) -> f64
Returns a random f32
value between -1.0
and 1.0
.
fn index(&self, bound: impl RangeBounds<usize>) -> usize
fn index(&self, bound: impl RangeBounds<usize>) -> usize
Returns a usize
value for stable indexing across different
word size platforms.
fn bool(&self) -> bool
fn bool(&self) -> bool
Returns a random boolean value.
§Example
use turborand::prelude::*;
let rng = Rng::with_seed(Default::default());
assert_eq!(rng.bool(), true);
fn chance(&self, rate: f64) -> bool
fn chance(&self, rate: f64) -> bool
Returns a boolean value based on a rate. rate
represents
the chance to return a true
value, with 0.0
being no
chance and 1.0
will always return true.
§Panics
Will panic if rate
is not a value between 0.0 and 1.0.
§Example
use turborand::prelude::*;
let rng = Rng::with_seed(Default::default());
assert_eq!(rng.chance(1.0), true);
fn sample<'a, T>(&self, list: &'a [T]) -> Option<&'a T>
fn sample<'a, T>(&self, list: &'a [T]) -> Option<&'a T>
Samples a random item from a slice of values.
§Example
use turborand::prelude::*;
let rng = Rng::with_seed(Default::default());
let values = [1, 2, 3, 4, 5, 6];
assert_eq!(rng.sample(&values), Some(&5));
fn sample_iter<T>(&self, list: T) -> Option<<T as Iterator>::Item>where
T: Iterator,
fn sample_iter<T>(&self, list: T) -> Option<<T as Iterator>::Item>where
T: Iterator,
Samples a random item from an iterator of values. O(1)
if the
iterator provides an accurate Iterator::size_hint
to allow
for optimisations to kick in, else O(n)
where n
is the size
of the iterator.
§Example
use turborand::prelude::*;
let rng = Rng::with_seed(Default::default());
let mut values = [1, 2, 3, 4, 5, 6];
assert_eq!(rng.sample_iter(values.iter_mut()), Some(&mut 5));
fn sample_mut<'a, T>(&self, list: &'a mut [T]) -> Option<&'a mut T>
fn sample_mut<'a, T>(&self, list: &'a mut [T]) -> Option<&'a mut T>
Samples a random &mut
item from a slice of values.
NOTE: Mutable references must be dropped before more can be sampled from the source slice. If a sampling tries to yield a mutable reference that already exists, the compiler will complain.
§Example
use turborand::prelude::*;
let rng = Rng::with_seed(Default::default());
let mut values = [1, 2, 3, 4, 5, 6];
let result1 = rng.sample_mut(&mut values);
assert_eq!(result1, Some(&mut 5));
let result2 = rng.sample_mut(&mut values);
assert_eq!(result2, Some(&mut 3));
fn sample_multiple<'a, T>(&self, list: &'a [T], amount: usize) -> Vec<&'a T>
fn sample_multiple<'a, T>(&self, list: &'a [T], amount: usize) -> Vec<&'a T>
Samples multiple unique items from a slice of values.
§Example
use turborand::prelude::*;
let rng = Rng::with_seed(Default::default());
let values = [1, 2, 3, 4, 5, 6];
assert_eq!(rng.sample_multiple(&values, 2), vec![&6, &4]);
fn sample_multiple_mut<'a, T>(
&self,
list: &'a mut [T],
amount: usize,
) -> Vec<&'a mut T>
fn sample_multiple_mut<'a, T>( &self, list: &'a mut [T], amount: usize, ) -> Vec<&'a mut T>
Samples multiple unique items from a mutable slice of values.
NOTE: Mutable references must be dropped before more can be sampled from the source slice. If a sampling tries to yield a mutable reference that already exists, the compiler will complain.
§Example
use turborand::prelude::*;
let rng = Rng::with_seed(Default::default());
let mut values = [1, 2, 3, 4, 5, 6];
assert_eq!(rng.sample_multiple_mut(&mut values, 2), vec![&mut 6, &mut 4]);
fn sample_multiple_iter<T>(
&self,
list: T,
amount: usize,
) -> Vec<<T as Iterator>::Item>where
T: Iterator,
fn sample_multiple_iter<T>(
&self,
list: T,
amount: usize,
) -> Vec<<T as Iterator>::Item>where
T: Iterator,
Samples multiple unique items from an iterator of values.
§Example
use turborand::prelude::*;
let rng = Rng::with_seed(Default::default());
let values = [1, 2, 3, 4, 5, 6];
assert_eq!(rng.sample_multiple_iter(values.iter(), 2), vec![&6, &4]);
fn weighted_sample<'a, T, F>(
&self,
list: &'a [T],
weight_sampler: F,
) -> Option<&'a T>
fn weighted_sample<'a, T, F>( &self, list: &'a [T], weight_sampler: F, ) -> Option<&'a T>
Stochastic Acceptance implementation of Roulette Wheel
weighted selection. Uses a closure to return a rate
value for each randomly sampled item
to decide whether to return it or not. The returned f64
value must be between 0.0
and 1.0
.
Returns None
if given an empty list to sample from. For a list containing 1 item, it’ll always
return that item regardless. Otherwise, operations are O(1) in complexity, and require no allocations.
§Panics
If the returned value of the weight_sampler
closure is not between 0.0
and 1.0
.
§Example
use turborand::prelude::*;
let rng = Rng::with_seed(Default::default());
let values = [1, 2, 3, 4, 5, 6];
let total = f64::from(values.iter().sum::<i32>());
assert_eq!(rng.weighted_sample(&values, |(&item, _)| item as f64 / total), Some(&4));
fn weighted_sample_mut<'a, T, F>(
&self,
list: &'a mut [T],
weight_sampler: F,
) -> Option<&'a mut T>
fn weighted_sample_mut<'a, T, F>( &self, list: &'a mut [T], weight_sampler: F, ) -> Option<&'a mut T>
Stochastic Acceptance implementation of Roulette Wheel
weighted selection. Uses a closure to return a rate
value for each randomly sampled item
to decide whether to return it or not. The returned f64
value must be between 0.0
and 1.0
.
Returns None
if given an empty list to sample from. For a list containing 1 item, it’ll always
return that item regardless. Otherwise, operations are O(1) in complexity, and require no allocations.
NOTE: Mutable references must be dropped before more can be sampled from the source slice. If a sampling tries to yield a mutable reference that already exists, the compiler will complain.
§Panics
If the returned value of the weight_sampler
closure is not between 0.0
and 1.0
.
§Example
use turborand::prelude::*;
let rng = Rng::with_seed(Default::default());
let mut values = [1, 2, 3, 4, 5, 6];
let total = f64::from(values.iter().sum::<i32>());
let result1 = rng.weighted_sample_mut(&mut values, |(&item, _)| item as f64 / total);
assert_eq!(result1, Some(&mut 4));
let result2 = rng.weighted_sample_mut(&mut values, |(&item, _)| item as f64 / total);
assert_eq!(result2, Some(&mut 5));
// We have to drop `result2` because the next sample will try to return the same
// value again. And rust won't allow two mutable references to exist at the same
// time
drop(result2);
let result3 = rng.weighted_sample_mut(&mut values, |(&item, _)| item as f64 / total);
// Weighted sample in this example will favour larger numbers, so 5 gets picked
// again.
assert_eq!(result3, Some(&mut 5));
fn shuffle<T>(&self, slice: &mut [T])
fn shuffle<T>(&self, slice: &mut [T])
Shuffles a slice randomly in O(n) time.
§Example
use turborand::prelude::*;
let rng = Rng::with_seed(Default::default());
let values = [1, 2, 3, 4, 5];
let mut shuffled = values.clone();
rng.shuffle(&mut shuffled);
assert_ne!(&shuffled, &values);
fn partial_shuffle<'a, T>(
&self,
slice: &'a mut [T],
amount: usize,
) -> (&'a mut [T], &'a mut [T])
fn partial_shuffle<'a, T>( &self, slice: &'a mut [T], amount: usize, ) -> (&'a mut [T], &'a mut [T])
Partially shuffles a slice by a given amount and returns the shuffled part and non-shuffled part.
§Example
use turborand::prelude::*;
let rng = Rng::with_seed(Default::default());
let mut values = [1, 2, 3, 4, 5];
let (shuffled, rest) = rng.partial_shuffle(&mut values, 2);
assert_eq!(shuffled, &mut [2, 5]);
assert_eq!(rest, &mut [1, 4, 3]);
fn alphabetic(&self) -> char
fn alphabetic(&self) -> char
Generates a random char
in ranges a-z and A-Z.
fn alphanumeric(&self) -> char
fn alphanumeric(&self) -> char
Generates a random char
in ranges a-z, A-Z and 0-9.