Struct bones_framework::render::ui::EguiTextures
source · pub struct EguiTextures(pub HashMap<Handle<Image>, TextureId>);
Expand description
Resource that maps image handles to their associated egui textures.
Tuple Fields§
§0: HashMap<Handle<Image>, TextureId>
Implementations§
source§impl EguiTextures
impl EguiTextures
sourcepub fn get(&self, handle: Handle<Image>) -> TextureId
pub fn get(&self, handle: Handle<Image>) -> TextureId
Get the [egui::TextureId
] for the given bones Handle<Image>
.
Methods from Deref<Target = HashMap<Handle<Image>, TextureId>>§
pub fn hasher(&self) -> &S
pub fn hasher(&self) -> &S
Returns a reference to the map’s BuildHasher
.
§Examples
use hashbrown::HashMap;
use hashbrown::hash_map::DefaultHashBuilder;
let hasher = DefaultHashBuilder::default();
let map: HashMap<i32, i32> = HashMap::with_hasher(hasher);
let hasher: &DefaultHashBuilder = map.hasher();
pub fn capacity(&self) -> usize
pub fn capacity(&self) -> usize
Returns the number of elements the map can hold without reallocating.
This number is a lower bound; the HashMap<K, V>
might be able to hold
more, but is guaranteed to be able to hold at least this many.
§Examples
use hashbrown::HashMap;
let map: HashMap<i32, i32> = HashMap::with_capacity(100);
assert_eq!(map.len(), 0);
assert!(map.capacity() >= 100);
pub fn keys(&self) -> Keys<'_, K, V>
pub fn keys(&self) -> Keys<'_, K, V>
An iterator visiting all keys in arbitrary order.
The iterator element type is &'a K
.
§Examples
use hashbrown::HashMap;
let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);
assert_eq!(map.len(), 3);
let mut vec: Vec<&str> = Vec::new();
for key in map.keys() {
println!("{}", key);
vec.push(*key);
}
// The `Keys` iterator produces keys in arbitrary order, so the
// keys must be sorted to test them against a sorted array.
vec.sort_unstable();
assert_eq!(vec, ["a", "b", "c"]);
assert_eq!(map.len(), 3);
pub fn values(&self) -> Values<'_, K, V>
pub fn values(&self) -> Values<'_, K, V>
An iterator visiting all values in arbitrary order.
The iterator element type is &'a V
.
§Examples
use hashbrown::HashMap;
let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);
assert_eq!(map.len(), 3);
let mut vec: Vec<i32> = Vec::new();
for val in map.values() {
println!("{}", val);
vec.push(*val);
}
// The `Values` iterator produces values in arbitrary order, so the
// values must be sorted to test them against a sorted array.
vec.sort_unstable();
assert_eq!(vec, [1, 2, 3]);
assert_eq!(map.len(), 3);
pub fn values_mut(&mut self) -> ValuesMut<'_, K, V>
pub fn values_mut(&mut self) -> ValuesMut<'_, K, V>
An iterator visiting all values mutably in arbitrary order.
The iterator element type is &'a mut V
.
§Examples
use hashbrown::HashMap;
let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);
for val in map.values_mut() {
*val = *val + 10;
}
assert_eq!(map.len(), 3);
let mut vec: Vec<i32> = Vec::new();
for val in map.values() {
println!("{}", val);
vec.push(*val);
}
// The `Values` iterator produces values in arbitrary order, so the
// values must be sorted to test them against a sorted array.
vec.sort_unstable();
assert_eq!(vec, [11, 12, 13]);
assert_eq!(map.len(), 3);
pub fn iter(&self) -> Iter<'_, K, V>
pub fn iter(&self) -> Iter<'_, K, V>
An iterator visiting all key-value pairs in arbitrary order.
The iterator element type is (&'a K, &'a V)
.
§Examples
use hashbrown::HashMap;
let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);
assert_eq!(map.len(), 3);
let mut vec: Vec<(&str, i32)> = Vec::new();
for (key, val) in map.iter() {
println!("key: {} val: {}", key, val);
vec.push((*key, *val));
}
// The `Iter` iterator produces items in arbitrary order, so the
// items must be sorted to test them against a sorted array.
vec.sort_unstable();
assert_eq!(vec, [("a", 1), ("b", 2), ("c", 3)]);
assert_eq!(map.len(), 3);
pub fn iter_mut(&mut self) -> IterMut<'_, K, V>
pub fn iter_mut(&mut self) -> IterMut<'_, K, V>
An iterator visiting all key-value pairs in arbitrary order,
with mutable references to the values.
The iterator element type is (&'a K, &'a mut V)
.
§Examples
use hashbrown::HashMap;
let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);
// Update all values
for (_, val) in map.iter_mut() {
*val *= 2;
}
assert_eq!(map.len(), 3);
let mut vec: Vec<(&str, i32)> = Vec::new();
for (key, val) in &map {
println!("key: {} val: {}", key, val);
vec.push((*key, *val));
}
// The `Iter` iterator produces items in arbitrary order, so the
// items must be sorted to test them against a sorted array.
vec.sort_unstable();
assert_eq!(vec, [("a", 2), ("b", 4), ("c", 6)]);
assert_eq!(map.len(), 3);
pub fn len(&self) -> usize
pub fn len(&self) -> usize
Returns the number of elements in the map.
§Examples
use hashbrown::HashMap;
let mut a = HashMap::new();
assert_eq!(a.len(), 0);
a.insert(1, "a");
assert_eq!(a.len(), 1);
pub fn is_empty(&self) -> bool
pub fn is_empty(&self) -> bool
Returns true
if the map contains no elements.
§Examples
use hashbrown::HashMap;
let mut a = HashMap::new();
assert!(a.is_empty());
a.insert(1, "a");
assert!(!a.is_empty());
pub fn drain(&mut self) -> Drain<'_, K, V, A>
pub fn drain(&mut self) -> Drain<'_, K, V, A>
Clears the map, returning all key-value pairs as an iterator. Keeps the allocated memory for reuse.
If the returned iterator is dropped before being fully consumed, it drops the remaining key-value pairs. The returned iterator keeps a mutable borrow on the vector to optimize its implementation.
§Examples
use hashbrown::HashMap;
let mut a = HashMap::new();
a.insert(1, "a");
a.insert(2, "b");
let capacity_before_drain = a.capacity();
for (k, v) in a.drain().take(1) {
assert!(k == 1 || k == 2);
assert!(v == "a" || v == "b");
}
// As we can see, the map is empty and contains no element.
assert!(a.is_empty() && a.len() == 0);
// But map capacity is equal to old one.
assert_eq!(a.capacity(), capacity_before_drain);
let mut a = HashMap::new();
a.insert(1, "a");
a.insert(2, "b");
{ // Iterator is dropped without being consumed.
let d = a.drain();
}
// But the map is empty even if we do not use Drain iterator.
assert!(a.is_empty());
pub fn retain<F>(&mut self, f: F)
pub fn retain<F>(&mut self, f: F)
Retains only the elements specified by the predicate. Keeps the allocated memory for reuse.
In other words, remove all pairs (k, v)
such that f(&k, &mut v)
returns false
.
The elements are visited in unsorted (and unspecified) order.
§Examples
use hashbrown::HashMap;
let mut map: HashMap<i32, i32> = (0..8).map(|x|(x, x*10)).collect();
assert_eq!(map.len(), 8);
map.retain(|&k, _| k % 2 == 0);
// We can see, that the number of elements inside map is changed.
assert_eq!(map.len(), 4);
let mut vec: Vec<(i32, i32)> = map.iter().map(|(&k, &v)| (k, v)).collect();
vec.sort_unstable();
assert_eq!(vec, [(0, 0), (2, 20), (4, 40), (6, 60)]);
pub fn extract_if<F>(&mut self, f: F) -> ExtractIf<'_, K, V, F, A>
pub fn extract_if<F>(&mut self, f: F) -> ExtractIf<'_, K, V, F, A>
Drains elements which are true under the given predicate, and returns an iterator over the removed items.
In other words, move all pairs (k, v)
such that f(&k, &mut v)
returns true
out
into another iterator.
Note that extract_if
lets you mutate every value in the filter closure, regardless of
whether you choose to keep or remove it.
If the returned ExtractIf
is not exhausted, e.g. because it is dropped without iterating
or the iteration short-circuits, then the remaining elements will be retained.
Use retain()
with a negated predicate if you do not need the returned iterator.
Keeps the allocated memory for reuse.
§Examples
use hashbrown::HashMap;
let mut map: HashMap<i32, i32> = (0..8).map(|x| (x, x)).collect();
let drained: HashMap<i32, i32> = map.extract_if(|k, _v| k % 2 == 0).collect();
let mut evens = drained.keys().cloned().collect::<Vec<_>>();
let mut odds = map.keys().cloned().collect::<Vec<_>>();
evens.sort();
odds.sort();
assert_eq!(evens, vec![0, 2, 4, 6]);
assert_eq!(odds, vec![1, 3, 5, 7]);
let mut map: HashMap<i32, i32> = (0..8).map(|x| (x, x)).collect();
{ // Iterator is dropped without being consumed.
let d = map.extract_if(|k, _v| k % 2 != 0);
}
// ExtractIf was not exhausted, therefore no elements were drained.
assert_eq!(map.len(), 8);
pub fn clear(&mut self)
pub fn clear(&mut self)
Clears the map, removing all key-value pairs. Keeps the allocated memory for reuse.
§Examples
use hashbrown::HashMap;
let mut a = HashMap::new();
a.insert(1, "a");
let capacity_before_clear = a.capacity();
a.clear();
// Map is empty.
assert!(a.is_empty());
// But map capacity is equal to old one.
assert_eq!(a.capacity(), capacity_before_clear);
pub fn reserve(&mut self, additional: usize)
pub fn reserve(&mut self, additional: usize)
Reserves capacity for at least additional
more elements to be inserted
in the HashMap
. The collection may reserve more space to avoid
frequent reallocations.
§Panics
Panics if the new capacity exceeds isize::MAX
bytes and abort
the program
in case of allocation error. Use try_reserve
instead
if you want to handle memory allocation failure.
§Examples
use hashbrown::HashMap;
let mut map: HashMap<&str, i32> = HashMap::new();
// Map is empty and doesn't allocate memory
assert_eq!(map.capacity(), 0);
map.reserve(10);
// And now map can hold at least 10 elements
assert!(map.capacity() >= 10);
pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>
pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>
Tries to reserve capacity for at least additional
more elements to be inserted
in the given HashMap<K,V>
. The collection may reserve more space to avoid
frequent reallocations.
§Errors
If the capacity overflows, or the allocator reports a failure, then an error is returned.
§Examples
use hashbrown::HashMap;
let mut map: HashMap<&str, isize> = HashMap::new();
// Map is empty and doesn't allocate memory
assert_eq!(map.capacity(), 0);
map.try_reserve(10).expect("why is the test harness OOMing on 10 bytes?");
// And now map can hold at least 10 elements
assert!(map.capacity() >= 10);
If the capacity overflows, or the allocator reports a failure, then an error is returned:
use hashbrown::HashMap;
use hashbrown::TryReserveError;
let mut map: HashMap<i32, i32> = HashMap::new();
match map.try_reserve(usize::MAX) {
Err(error) => match error {
TryReserveError::CapacityOverflow => {}
_ => panic!("TryReserveError::AllocError ?"),
},
_ => panic!(),
}
pub fn shrink_to_fit(&mut self)
pub fn shrink_to_fit(&mut self)
Shrinks the capacity of the map as much as possible. It will drop down as much as possible while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.
§Examples
use hashbrown::HashMap;
let mut map: HashMap<i32, i32> = HashMap::with_capacity(100);
map.insert(1, 2);
map.insert(3, 4);
assert!(map.capacity() >= 100);
map.shrink_to_fit();
assert!(map.capacity() >= 2);
pub fn shrink_to(&mut self, min_capacity: usize)
pub fn shrink_to(&mut self, min_capacity: usize)
Shrinks the capacity of the map with a lower limit. It will drop down no lower than the supplied limit while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.
This function does nothing if the current capacity is smaller than the supplied minimum capacity.
§Examples
use hashbrown::HashMap;
let mut map: HashMap<i32, i32> = HashMap::with_capacity(100);
map.insert(1, 2);
map.insert(3, 4);
assert!(map.capacity() >= 100);
map.shrink_to(10);
assert!(map.capacity() >= 10);
map.shrink_to(0);
assert!(map.capacity() >= 2);
map.shrink_to(10);
assert!(map.capacity() >= 2);
pub fn entry(&mut self, key: K) -> Entry<'_, K, V, S, A>
pub fn entry(&mut self, key: K) -> Entry<'_, K, V, S, A>
Gets the given key’s corresponding entry in the map for in-place manipulation.
§Examples
use hashbrown::HashMap;
let mut letters = HashMap::new();
for ch in "a short treatise on fungi".chars() {
let counter = letters.entry(ch).or_insert(0);
*counter += 1;
}
assert_eq!(letters[&'s'], 2);
assert_eq!(letters[&'t'], 3);
assert_eq!(letters[&'u'], 1);
assert_eq!(letters.get(&'y'), None);
pub fn entry_ref<'a, 'b, Q>(
&'a mut self,
key: &'b Q,
) -> EntryRef<'a, 'b, K, Q, V, S, A>
pub fn entry_ref<'a, 'b, Q>( &'a mut self, key: &'b Q, ) -> EntryRef<'a, 'b, K, Q, V, S, A>
Gets the given key’s corresponding entry by reference in the map for in-place manipulation.
§Examples
use hashbrown::HashMap;
let mut words: HashMap<String, usize> = HashMap::new();
let source = ["poneyland", "horseyland", "poneyland", "poneyland"];
for (i, &s) in source.iter().enumerate() {
let counter = words.entry_ref(s).or_insert(0);
*counter += 1;
}
assert_eq!(words["poneyland"], 3);
assert_eq!(words["horseyland"], 1);
pub fn get<Q>(&self, k: &Q) -> Option<&V>
pub fn get<Q>(&self, k: &Q) -> Option<&V>
Returns a reference to the value corresponding to the key.
The key may be any borrowed form of the map’s key type, but
Hash
and Eq
on the borrowed form must match those for
the key type.
§Examples
use hashbrown::HashMap;
let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.get(&1), Some(&"a"));
assert_eq!(map.get(&2), None);
pub fn get_key_value<Q>(&self, k: &Q) -> Option<(&K, &V)>
pub fn get_key_value<Q>(&self, k: &Q) -> Option<(&K, &V)>
Returns the key-value pair corresponding to the supplied key.
The supplied key may be any borrowed form of the map’s key type, but
Hash
and Eq
on the borrowed form must match those for
the key type.
§Examples
use hashbrown::HashMap;
let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.get_key_value(&1), Some((&1, &"a")));
assert_eq!(map.get_key_value(&2), None);
pub fn get_key_value_mut<Q>(&mut self, k: &Q) -> Option<(&K, &mut V)>
pub fn get_key_value_mut<Q>(&mut self, k: &Q) -> Option<(&K, &mut V)>
Returns the key-value pair corresponding to the supplied key, with a mutable reference to value.
The supplied key may be any borrowed form of the map’s key type, but
Hash
and Eq
on the borrowed form must match those for
the key type.
§Examples
use hashbrown::HashMap;
let mut map = HashMap::new();
map.insert(1, "a");
let (k, v) = map.get_key_value_mut(&1).unwrap();
assert_eq!(k, &1);
assert_eq!(v, &mut "a");
*v = "b";
assert_eq!(map.get_key_value_mut(&1), Some((&1, &mut "b")));
assert_eq!(map.get_key_value_mut(&2), None);
pub fn contains_key<Q>(&self, k: &Q) -> bool
pub fn contains_key<Q>(&self, k: &Q) -> bool
Returns true
if the map contains a value for the specified key.
The key may be any borrowed form of the map’s key type, but
Hash
and Eq
on the borrowed form must match those for
the key type.
§Examples
use hashbrown::HashMap;
let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.contains_key(&1), true);
assert_eq!(map.contains_key(&2), false);
pub fn get_mut<Q>(&mut self, k: &Q) -> Option<&mut V>
pub fn get_mut<Q>(&mut self, k: &Q) -> Option<&mut V>
Returns a mutable reference to the value corresponding to the key.
The key may be any borrowed form of the map’s key type, but
Hash
and Eq
on the borrowed form must match those for
the key type.
§Examples
use hashbrown::HashMap;
let mut map = HashMap::new();
map.insert(1, "a");
if let Some(x) = map.get_mut(&1) {
*x = "b";
}
assert_eq!(map[&1], "b");
assert_eq!(map.get_mut(&2), None);
pub fn get_many_mut<Q, const N: usize>(
&mut self,
ks: [&Q; N],
) -> Option<[&mut V; N]>
pub fn get_many_mut<Q, const N: usize>( &mut self, ks: [&Q; N], ) -> Option<[&mut V; N]>
Attempts to get mutable references to N
values in the map at once.
Returns an array of length N
with the results of each query. For soundness, at most one
mutable reference will be returned to any value. None
will be returned if any of the
keys are duplicates or missing.
§Examples
use hashbrown::HashMap;
let mut libraries = HashMap::new();
libraries.insert("Bodleian Library".to_string(), 1602);
libraries.insert("Athenæum".to_string(), 1807);
libraries.insert("Herzogin-Anna-Amalia-Bibliothek".to_string(), 1691);
libraries.insert("Library of Congress".to_string(), 1800);
let got = libraries.get_many_mut([
"Athenæum",
"Library of Congress",
]);
assert_eq!(
got,
Some([
&mut 1807,
&mut 1800,
]),
);
// Missing keys result in None
let got = libraries.get_many_mut([
"Athenæum",
"New York Public Library",
]);
assert_eq!(got, None);
// Duplicate keys result in None
let got = libraries.get_many_mut([
"Athenæum",
"Athenæum",
]);
assert_eq!(got, None);
pub unsafe fn get_many_unchecked_mut<Q, const N: usize>(
&mut self,
ks: [&Q; N],
) -> Option<[&mut V; N]>
pub unsafe fn get_many_unchecked_mut<Q, const N: usize>( &mut self, ks: [&Q; N], ) -> Option<[&mut V; N]>
Attempts to get mutable references to N
values in the map at once, without validating that
the values are unique.
Returns an array of length N
with the results of each query. None
will be returned if
any of the keys are missing.
For a safe alternative see get_many_mut
.
§Safety
Calling this method with overlapping keys is undefined behavior even if the resulting references are not used.
§Examples
use hashbrown::HashMap;
let mut libraries = HashMap::new();
libraries.insert("Bodleian Library".to_string(), 1602);
libraries.insert("Athenæum".to_string(), 1807);
libraries.insert("Herzogin-Anna-Amalia-Bibliothek".to_string(), 1691);
libraries.insert("Library of Congress".to_string(), 1800);
let got = libraries.get_many_mut([
"Athenæum",
"Library of Congress",
]);
assert_eq!(
got,
Some([
&mut 1807,
&mut 1800,
]),
);
// Missing keys result in None
let got = libraries.get_many_mut([
"Athenæum",
"New York Public Library",
]);
assert_eq!(got, None);
pub fn get_many_key_value_mut<Q, const N: usize>(
&mut self,
ks: [&Q; N],
) -> Option<[(&K, &mut V); N]>
pub fn get_many_key_value_mut<Q, const N: usize>( &mut self, ks: [&Q; N], ) -> Option<[(&K, &mut V); N]>
Attempts to get mutable references to N
values in the map at once, with immutable
references to the corresponding keys.
Returns an array of length N
with the results of each query. For soundness, at most one
mutable reference will be returned to any value. None
will be returned if any of the keys
are duplicates or missing.
§Examples
use hashbrown::HashMap;
let mut libraries = HashMap::new();
libraries.insert("Bodleian Library".to_string(), 1602);
libraries.insert("Athenæum".to_string(), 1807);
libraries.insert("Herzogin-Anna-Amalia-Bibliothek".to_string(), 1691);
libraries.insert("Library of Congress".to_string(), 1800);
let got = libraries.get_many_key_value_mut([
"Bodleian Library",
"Herzogin-Anna-Amalia-Bibliothek",
]);
assert_eq!(
got,
Some([
(&"Bodleian Library".to_string(), &mut 1602),
(&"Herzogin-Anna-Amalia-Bibliothek".to_string(), &mut 1691),
]),
);
// Missing keys result in None
let got = libraries.get_many_key_value_mut([
"Bodleian Library",
"Gewandhaus",
]);
assert_eq!(got, None);
// Duplicate keys result in None
let got = libraries.get_many_key_value_mut([
"Bodleian Library",
"Herzogin-Anna-Amalia-Bibliothek",
"Herzogin-Anna-Amalia-Bibliothek",
]);
assert_eq!(got, None);
pub unsafe fn get_many_key_value_unchecked_mut<Q, const N: usize>(
&mut self,
ks: [&Q; N],
) -> Option<[(&K, &mut V); N]>
pub unsafe fn get_many_key_value_unchecked_mut<Q, const N: usize>( &mut self, ks: [&Q; N], ) -> Option<[(&K, &mut V); N]>
Attempts to get mutable references to N
values in the map at once, with immutable
references to the corresponding keys, without validating that the values are unique.
Returns an array of length N
with the results of each query. None
will be returned if
any of the keys are missing.
For a safe alternative see get_many_key_value_mut
.
§Safety
Calling this method with overlapping keys is undefined behavior even if the resulting references are not used.
§Examples
use hashbrown::HashMap;
let mut libraries = HashMap::new();
libraries.insert("Bodleian Library".to_string(), 1602);
libraries.insert("Athenæum".to_string(), 1807);
libraries.insert("Herzogin-Anna-Amalia-Bibliothek".to_string(), 1691);
libraries.insert("Library of Congress".to_string(), 1800);
let got = libraries.get_many_key_value_mut([
"Bodleian Library",
"Herzogin-Anna-Amalia-Bibliothek",
]);
assert_eq!(
got,
Some([
(&"Bodleian Library".to_string(), &mut 1602),
(&"Herzogin-Anna-Amalia-Bibliothek".to_string(), &mut 1691),
]),
);
// Missing keys result in None
let got = libraries.get_many_key_value_mut([
"Bodleian Library",
"Gewandhaus",
]);
assert_eq!(got, None);
pub fn insert(&mut self, k: K, v: V) -> Option<V>
pub fn insert(&mut self, k: K, v: V) -> Option<V>
Inserts a key-value pair into the map.
If the map did not have this key present, None
is returned.
If the map did have this key present, the value is updated, and the old
value is returned. The key is not updated, though; this matters for
types that can be ==
without being identical. See the std::collections
module-level documentation for more.
§Examples
use hashbrown::HashMap;
let mut map = HashMap::new();
assert_eq!(map.insert(37, "a"), None);
assert_eq!(map.is_empty(), false);
map.insert(37, "b");
assert_eq!(map.insert(37, "c"), Some("b"));
assert_eq!(map[&37], "c");
pub fn insert_unique_unchecked(&mut self, k: K, v: V) -> (&K, &mut V)
pub fn insert_unique_unchecked(&mut self, k: K, v: V) -> (&K, &mut V)
Insert a key-value pair into the map without checking if the key already exists in the map.
Returns a reference to the key and value just inserted.
This operation is safe if a key does not exist in the map.
However, if a key exists in the map already, the behavior is unspecified: this operation may panic, loop forever, or any following operation with the map may panic, loop forever or return arbitrary result.
That said, this operation (and following operations) are guaranteed to not violate memory safety.
This operation is faster than regular insert, because it does not perform lookup before insertion.
This operation is useful during initial population of the map. For example, when constructing a map from another map, we know that keys are unique.
§Examples
use hashbrown::HashMap;
let mut map1 = HashMap::new();
assert_eq!(map1.insert(1, "a"), None);
assert_eq!(map1.insert(2, "b"), None);
assert_eq!(map1.insert(3, "c"), None);
assert_eq!(map1.len(), 3);
let mut map2 = HashMap::new();
for (key, value) in map1.into_iter() {
map2.insert_unique_unchecked(key, value);
}
let (key, value) = map2.insert_unique_unchecked(4, "d");
assert_eq!(key, &4);
assert_eq!(value, &mut "d");
*value = "e";
assert_eq!(map2[&1], "a");
assert_eq!(map2[&2], "b");
assert_eq!(map2[&3], "c");
assert_eq!(map2[&4], "e");
assert_eq!(map2.len(), 4);
pub fn try_insert(
&mut self,
key: K,
value: V,
) -> Result<&mut V, OccupiedError<'_, K, V, S, A>>
pub fn try_insert( &mut self, key: K, value: V, ) -> Result<&mut V, OccupiedError<'_, K, V, S, A>>
Tries to insert a key-value pair into the map, and returns a mutable reference to the value in the entry.
§Errors
If the map already had this key present, nothing is updated, and an error containing the occupied entry and the value is returned.
§Examples
Basic usage:
use hashbrown::HashMap;
use hashbrown::hash_map::OccupiedError;
let mut map = HashMap::new();
assert_eq!(map.try_insert(37, "a").unwrap(), &"a");
match map.try_insert(37, "b") {
Err(OccupiedError { entry, value }) => {
assert_eq!(entry.key(), &37);
assert_eq!(entry.get(), &"a");
assert_eq!(value, "b");
}
_ => panic!()
}
pub fn remove<Q>(&mut self, k: &Q) -> Option<V>
pub fn remove<Q>(&mut self, k: &Q) -> Option<V>
Removes a key from the map, returning the value at the key if the key was previously in the map. Keeps the allocated memory for reuse.
The key may be any borrowed form of the map’s key type, but
Hash
and Eq
on the borrowed form must match those for
the key type.
§Examples
use hashbrown::HashMap;
let mut map = HashMap::new();
// The map is empty
assert!(map.is_empty() && map.capacity() == 0);
map.insert(1, "a");
assert_eq!(map.remove(&1), Some("a"));
assert_eq!(map.remove(&1), None);
// Now map holds none elements
assert!(map.is_empty());
pub fn remove_entry<Q>(&mut self, k: &Q) -> Option<(K, V)>
pub fn remove_entry<Q>(&mut self, k: &Q) -> Option<(K, V)>
Removes a key from the map, returning the stored key and value if the key was previously in the map. Keeps the allocated memory for reuse.
The key may be any borrowed form of the map’s key type, but
Hash
and Eq
on the borrowed form must match those for
the key type.
§Examples
use hashbrown::HashMap;
let mut map = HashMap::new();
// The map is empty
assert!(map.is_empty() && map.capacity() == 0);
map.insert(1, "a");
assert_eq!(map.remove_entry(&1), Some((1, "a")));
assert_eq!(map.remove(&1), None);
// Now map hold none elements
assert!(map.is_empty());
pub fn raw_entry_mut(&mut self) -> RawEntryBuilderMut<'_, K, V, S, A>
pub fn raw_entry_mut(&mut self) -> RawEntryBuilderMut<'_, K, V, S, A>
Creates a raw entry builder for the HashMap.
Raw entries provide the lowest level of control for searching and manipulating a map. They must be manually initialized with a hash and then manually searched. After this, insertions into a vacant entry still require an owned key to be provided.
Raw entries are useful for such exotic situations as:
- Hash memoization
- Deferring the creation of an owned key until it is known to be required
- Using a search key that doesn’t work with the Borrow trait
- Using custom comparison logic without newtype wrappers
Because raw entries provide much more low-level control, it’s much easier
to put the HashMap into an inconsistent state which, while memory-safe,
will cause the map to produce seemingly random results. Higher-level and
more foolproof APIs like entry
should be preferred when possible.
In particular, the hash used to initialized the raw entry must still be consistent with the hash of the key that is ultimately stored in the entry. This is because implementations of HashMap may need to recompute hashes when resizing, at which point only the keys are available.
Raw entries give mutable access to the keys. This must not be used to modify how the key would compare or hash, as the map will not re-evaluate where the key should go, meaning the keys may become “lost” if their location does not reflect their state. For instance, if you change a key so that the map now contains keys which compare equal, search may start acting erratically, with two keys randomly masking each other. Implementations are free to assume this doesn’t happen (within the limits of memory-safety).
§Examples
use core::hash::{BuildHasher, Hash};
use hashbrown::hash_map::{HashMap, RawEntryMut};
let mut map = HashMap::new();
map.extend([("a", 100), ("b", 200), ("c", 300)]);
fn compute_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 {
use core::hash::Hasher;
let mut state = hash_builder.build_hasher();
key.hash(&mut state);
state.finish()
}
// Existing key (insert and update)
match map.raw_entry_mut().from_key(&"a") {
RawEntryMut::Vacant(_) => unreachable!(),
RawEntryMut::Occupied(mut view) => {
assert_eq!(view.get(), &100);
let v = view.get_mut();
let new_v = (*v) * 10;
*v = new_v;
assert_eq!(view.insert(1111), 1000);
}
}
assert_eq!(map[&"a"], 1111);
assert_eq!(map.len(), 3);
// Existing key (take)
let hash = compute_hash(map.hasher(), &"c");
match map.raw_entry_mut().from_key_hashed_nocheck(hash, &"c") {
RawEntryMut::Vacant(_) => unreachable!(),
RawEntryMut::Occupied(view) => {
assert_eq!(view.remove_entry(), ("c", 300));
}
}
assert_eq!(map.raw_entry().from_key(&"c"), None);
assert_eq!(map.len(), 2);
// Nonexistent key (insert and update)
let key = "d";
let hash = compute_hash(map.hasher(), &key);
match map.raw_entry_mut().from_hash(hash, |q| *q == key) {
RawEntryMut::Occupied(_) => unreachable!(),
RawEntryMut::Vacant(view) => {
let (k, value) = view.insert("d", 4000);
assert_eq!((*k, *value), ("d", 4000));
*value = 40000;
}
}
assert_eq!(map[&"d"], 40000);
assert_eq!(map.len(), 3);
match map.raw_entry_mut().from_hash(hash, |q| *q == key) {
RawEntryMut::Vacant(_) => unreachable!(),
RawEntryMut::Occupied(view) => {
assert_eq!(view.remove_entry(), ("d", 40000));
}
}
assert_eq!(map.get(&"d"), None);
assert_eq!(map.len(), 2);
pub fn raw_entry(&self) -> RawEntryBuilder<'_, K, V, S, A>
pub fn raw_entry(&self) -> RawEntryBuilder<'_, K, V, S, A>
Creates a raw immutable entry builder for the HashMap.
Raw entries provide the lowest level of control for searching and manipulating a map. They must be manually initialized with a hash and then manually searched.
This is useful for
- Hash memoization
- Using a search key that doesn’t work with the Borrow trait
- Using custom comparison logic without newtype wrappers
Unless you are in such a situation, higher-level and more foolproof APIs like
get
should be preferred.
Immutable raw entries have very limited use; you might instead want raw_entry_mut
.
§Examples
use core::hash::{BuildHasher, Hash};
use hashbrown::HashMap;
let mut map = HashMap::new();
map.extend([("a", 100), ("b", 200), ("c", 300)]);
fn compute_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 {
use core::hash::Hasher;
let mut state = hash_builder.build_hasher();
key.hash(&mut state);
state.finish()
}
for k in ["a", "b", "c", "d", "e", "f"] {
let hash = compute_hash(map.hasher(), k);
let v = map.get(&k).cloned();
let kv = v.as_ref().map(|v| (&k, v));
println!("Key: {} and value: {:?}", k, v);
assert_eq!(map.raw_entry().from_key(&k), kv);
assert_eq!(map.raw_entry().from_hash(hash, |q| *q == k), kv);
assert_eq!(map.raw_entry().from_key_hashed_nocheck(hash, &k), kv);
}
pub fn raw_table(&self) -> &RawTable<(K, V), A>
pub fn raw_table(&self) -> &RawTable<(K, V), A>
Returns a reference to the [RawTable
] used underneath [HashMap
].
This function is only available if the raw
feature of the crate is enabled.
See raw_table_mut
for more.
pub fn raw_table_mut(&mut self) -> &mut RawTable<(K, V), A>
pub fn raw_table_mut(&mut self) -> &mut RawTable<(K, V), A>
Returns a mutable reference to the RawTable
used underneath HashMap
.
This function is only available if the raw
feature of the crate is enabled.
§Note
Calling this function is safe, but using the raw hash table API may require unsafe functions or blocks.
RawTable
API gives the lowest level of control under the map that can be useful
for extending the HashMap’s API, but may lead to undefined behavior.
§Examples
use core::hash::{BuildHasher, Hash};
use hashbrown::HashMap;
let mut map = HashMap::new();
map.extend([("a", 10), ("b", 20), ("c", 30)]);
assert_eq!(map.len(), 3);
// Let's imagine that we have a value and a hash of the key, but not the key itself.
// However, if you want to remove the value from the map by hash and value, and you
// know exactly that the value is unique, then you can create a function like this:
fn remove_by_hash<K, V, S, F>(
map: &mut HashMap<K, V, S>,
hash: u64,
is_match: F,
) -> Option<(K, V)>
where
F: Fn(&(K, V)) -> bool,
{
let raw_table = map.raw_table_mut();
match raw_table.find(hash, is_match) {
Some(bucket) => Some(unsafe { raw_table.remove(bucket).0 }),
None => None,
}
}
fn compute_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 {
use core::hash::Hasher;
let mut state = hash_builder.build_hasher();
key.hash(&mut state);
state.finish()
}
let hash = compute_hash(map.hasher(), "a");
assert_eq!(remove_by_hash(&mut map, hash, |(_, v)| *v == 10), Some(("a", 10)));
assert_eq!(map.get(&"a"), None);
assert_eq!(map.len(), 2);
Trait Implementations§
source§impl Clone for EguiTextures
impl Clone for EguiTextures
source§fn clone(&self) -> EguiTextures
fn clone(&self) -> EguiTextures
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl Debug for EguiTextures
impl Debug for EguiTextures
source§impl Default for EguiTextures
impl Default for EguiTextures
source§fn default() -> EguiTextures
fn default() -> EguiTextures
source§impl Deref for EguiTextures
impl Deref for EguiTextures
source§impl DerefMut for EguiTextures
impl DerefMut for EguiTextures
source§impl HasSchema for EguiTextures
impl HasSchema for EguiTextures
source§fn register_schema()
fn register_schema()
source§fn cast<T>(this: &Self) -> &Twhere
T: HasSchema,
fn cast<T>(this: &Self) -> &Twhere
T: HasSchema,
source§fn try_cast<T>(this: &Self) -> Result<&T, SchemaMismatchError>where
T: HasSchema,
fn try_cast<T>(this: &Self) -> Result<&T, SchemaMismatchError>where
T: HasSchema,
source§fn cast_mut<T>(this: &mut Self) -> &mut Twhere
T: HasSchema,
fn cast_mut<T>(this: &mut Self) -> &mut Twhere
T: HasSchema,
source§fn try_cast_mut<T>(this: &mut Self) -> Result<&mut T, SchemaMismatchError>where
T: HasSchema,
fn try_cast_mut<T>(this: &mut Self) -> Result<&mut T, SchemaMismatchError>where
T: HasSchema,
source§fn as_schema_ref(&self) -> SchemaRef<'_>where
Self: Sized,
fn as_schema_ref(&self) -> SchemaRef<'_>where
Self: Sized,
T
to a SchemaRef
source§fn as_schema_mut(&mut self) -> SchemaRefMut<'_>where
Self: Sized,
fn as_schema_mut(&mut self) -> SchemaRefMut<'_>where
Self: Sized,
T
to a SchemaRefMut
Auto Trait Implementations§
impl Freeze for EguiTextures
impl RefUnwindSafe for EguiTextures
impl Send for EguiTextures
impl Sync for EguiTextures
impl Unpin for EguiTextures
impl UnwindSafe for EguiTextures
Blanket Implementations§
§impl<'a, T, E> AsTaggedExplicit<'a, E> for Twhere
T: 'a,
impl<'a, T, E> AsTaggedExplicit<'a, E> for Twhere
T: 'a,
§impl<'a, T, E> AsTaggedImplicit<'a, E> for Twhere
T: 'a,
impl<'a, T, E> AsTaggedImplicit<'a, E> for Twhere
T: 'a,
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§default unsafe fn clone_to_uninit(&self, dst: *mut T)
default unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)§impl<T> Conv for T
impl<T> Conv for T
§impl<T> FmtForward for T
impl<T> FmtForward for T
§fn fmt_binary(self) -> FmtBinary<Self>where
Self: Binary,
fn fmt_binary(self) -> FmtBinary<Self>where
Self: Binary,
self
to use its Binary
implementation when Debug
-formatted.§fn fmt_display(self) -> FmtDisplay<Self>where
Self: Display,
fn fmt_display(self) -> FmtDisplay<Self>where
Self: Display,
self
to use its Display
implementation when
Debug
-formatted.§fn fmt_lower_exp(self) -> FmtLowerExp<Self>where
Self: LowerExp,
fn fmt_lower_exp(self) -> FmtLowerExp<Self>where
Self: LowerExp,
self
to use its LowerExp
implementation when
Debug
-formatted.§fn fmt_lower_hex(self) -> FmtLowerHex<Self>where
Self: LowerHex,
fn fmt_lower_hex(self) -> FmtLowerHex<Self>where
Self: LowerHex,
self
to use its LowerHex
implementation when
Debug
-formatted.§fn fmt_octal(self) -> FmtOctal<Self>where
Self: Octal,
fn fmt_octal(self) -> FmtOctal<Self>where
Self: Octal,
self
to use its Octal
implementation when Debug
-formatted.§fn fmt_pointer(self) -> FmtPointer<Self>where
Self: Pointer,
fn fmt_pointer(self) -> FmtPointer<Self>where
Self: Pointer,
self
to use its Pointer
implementation when
Debug
-formatted.§fn fmt_upper_exp(self) -> FmtUpperExp<Self>where
Self: UpperExp,
fn fmt_upper_exp(self) -> FmtUpperExp<Self>where
Self: UpperExp,
self
to use its UpperExp
implementation when
Debug
-formatted.§fn fmt_upper_hex(self) -> FmtUpperHex<Self>where
Self: UpperHex,
fn fmt_upper_hex(self) -> FmtUpperHex<Self>where
Self: UpperHex,
self
to use its UpperHex
implementation when
Debug
-formatted.§fn fmt_list(self) -> FmtList<Self>where
&'a Self: for<'a> IntoIterator,
fn fmt_list(self) -> FmtList<Self>where
&'a Self: for<'a> IntoIterator,
§impl<S> FromSample<S> for S
impl<S> FromSample<S> for S
fn from_sample_(s: S) -> S
source§impl<T> FromWorld for Twhere
T: Default,
impl<T> FromWorld for Twhere
T: Default,
source§fn from_world(_world: &World) -> T
fn from_world(_world: &World) -> T
Self
using data from the given World
.§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
§impl<F, T> IntoSample<T> for Fwhere
T: FromSample<F>,
impl<F, T> IntoSample<T> for Fwhere
T: FromSample<F>,
fn into_sample(self) -> T
§impl<T> Pipe for Twhere
T: ?Sized,
impl<T> Pipe for Twhere
T: ?Sized,
§fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> Rwhere
Self: Sized,
fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> Rwhere
Self: Sized,
§fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> Rwhere
R: 'a,
fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> Rwhere
R: 'a,
self
and passes that borrow into the pipe function. Read more§fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> Rwhere
R: 'a,
fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> Rwhere
R: 'a,
self
and passes that borrow into the pipe function. Read more§fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
§fn pipe_borrow_mut<'a, B, R>(
&'a mut self,
func: impl FnOnce(&'a mut B) -> R,
) -> R
fn pipe_borrow_mut<'a, B, R>( &'a mut self, func: impl FnOnce(&'a mut B) -> R, ) -> R
§fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
self
, then passes self.as_ref()
into the pipe function.§fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
self
, then passes self.as_mut()
into the pipe
function.§fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
self
, then passes self.deref()
into the pipe function.source§impl<T> RawDefault for Twhere
T: Default,
impl<T> RawDefault for Twhere
T: Default,
§impl<T> Tap for T
impl<T> Tap for T
§fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
Borrow<B>
of a value. Read more§fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
BorrowMut<B>
of a value. Read more§fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
AsRef<R>
view of a value. Read more§fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
AsMut<R>
view of a value. Read more§fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
Deref::Target
of a value. Read more§fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
Deref::Target
of a value. Read more§fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self
fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self
.tap()
only in debug builds, and is erased in release builds.§fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self
fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self
.tap_mut()
only in debug builds, and is erased in release
builds.§fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
.tap_borrow()
only in debug builds, and is erased in release
builds.§fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
.tap_borrow_mut()
only in debug builds, and is erased in release
builds.§fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
.tap_ref()
only in debug builds, and is erased in release
builds.§fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
.tap_ref_mut()
only in debug builds, and is erased in release
builds.§fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
.tap_deref()
only in debug builds, and is erased in release
builds.