1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
//! [`Schema`], [`HasSchema`], [`SchemaData`], and related types.

use std::{alloc::Layout, any::TypeId, borrow::Cow, ffi::c_void};

use ustr::Ustr;

use crate::{alloc::TypeDatas, prelude::*};

/// Trait implemented for types that have a [`Schema`].
///
/// # Safety
///
/// This trait is unsafe to implement manually because it makes claims about the memory layout of a
/// type that may be depended on in unsafe code, but it is safe to derive [`HasSchema`] on supported
/// types.
///
/// If implemented manually, you must ensure that the schema accurately describes the memory layout
/// of the type, or else accessing the type according to the schema would be unsound.
pub unsafe trait HasSchema: Sync + Send + 'static {
    /// Get this type's [`Schema`].
    #[must_use = "If you are only calling schema() for it's side-effect of registering the
        schema, it is more clear to use register_schema() instead."]
    fn schema() -> &'static Schema;

    /// Register this schema with the global schema registry.
    ///
    /// This is automatically done by the framework in many cases, whenever
    /// [`schema()`][HasSchema::schema] is called, but it may be necessary sometimes to
    /// manually register it.
    fn register_schema() {
        let _ = Self::schema();
    }

    /// Cast a reference of this type to a reference of another type with the same memory layout.
    ///
    /// # Panics
    ///
    /// Panics if the schema of `T` doesn't match the schema of `Self`.
    #[track_caller]
    fn cast<T: HasSchema>(this: &Self) -> &T {
        HasSchema::try_cast(this).expect(SchemaMismatchError::MSG)
    }

    /// Cast a reference of this type to a reference of another type with the same memory layout.
    ///
    /// # Errors
    ///
    /// Errors if the schema of `T` doesn't match the schema of `Self`.
    fn try_cast<T: HasSchema>(this: &Self) -> Result<&T, SchemaMismatchError> {
        let s1 = Self::schema();
        let s2 = T::schema();
        if s1.represents(s2) {
            // SOUND: the schemas have the same memory representation.
            unsafe { Ok(&*(this as *const Self as *const T)) }
        } else {
            Err(SchemaMismatchError)
        }
    }

    /// Cast a mutable reference of this type to a reference of another type with the same memory
    /// layout.
    ///
    /// # Panics
    ///
    /// Panics if the schema of `T` doesn't match the schema of `Self`.
    #[track_caller]
    fn cast_mut<T: HasSchema>(this: &mut Self) -> &mut T {
        HasSchema::try_cast_mut(this).expect(SchemaMismatchError::MSG)
    }

    /// Cast a mutable reference of this type to a reference of another type with the same memory
    /// layout.
    ///
    /// # Errors
    ///
    /// Errors if the schema of `T` doesn't match the schema of `Self`.
    fn try_cast_mut<T: HasSchema>(this: &mut Self) -> Result<&mut T, SchemaMismatchError> {
        let s1 = Self::schema();
        let s2 = T::schema();
        if s1.represents(s2) {
            // SOUND: the schemas have the same memory representation.
            unsafe { Ok(&mut *(this as *mut Self as *mut T)) }
        } else {
            Err(SchemaMismatchError)
        }
    }

    /// Converts a reference of `T` to a [`SchemaRef`]
    fn as_schema_ref(&self) -> SchemaRef
    where
        Self: Sized,
    {
        SchemaRef::new(self)
    }

    /// Converts a reference of `T` to a [`SchemaRefMut`]
    fn as_schema_mut(&mut self) -> SchemaRefMut
    where
        Self: Sized,
    {
        SchemaRefMut::new(self)
    }
}

// Export the `Schema` type so it appears in this module. It is defined in the registry module so
// that the registry is the only module that is allowed to construct `Schema`s.
#[doc(inline)]
pub use crate::registry::Schema;

impl Schema {
    /// Returns whether or not this schema represents the same memory layout as the other schema,
    /// and you can safely cast a pointer to one to a pointer to the other.
    pub fn represents(&self, other: &Schema) -> bool {
        // If these have equal type/schema ids.
        self == other
        // If the schemas don't have any opaque fields, and are equal to each-other, then they
        // have the same representation.
        || (!self.kind.has_opaque() && !other.kind.has_opaque() && {
            match (&self.kind, &other.kind) {
                (SchemaKind::Struct(s1), SchemaKind::Struct(s2)) => {
                    s1.fields.len() == s2.fields.len() &&
                        s1.fields.iter().zip(s2.fields.iter())
                        .all(|(f1, f2)| f1.schema.represents(f2.schema))
                },
                (SchemaKind::Vec(v1), SchemaKind::Vec(v2)) => v1.represents(v2),
                (SchemaKind::Primitive(p1), SchemaKind::Primitive(p2)) => p1 == p2,
                (SchemaKind::Enum(e1), SchemaKind::Enum(e2)) => e1 == e2,
                _ => false
            }
        })
    }
}

/// Schema information describing the memory layout of a type.
#[derive(Clone)]
pub struct SchemaData {
    /// The short name of the type.
    ///
    /// **Note:** Currently bones isn't very standardized as far as name generation for Rust or
    /// other language type names, and this is mostly for diagnostics. This may change in the future
    /// but for now there are no guarantees.
    pub name: Ustr,
    /// The full name of the type, including any module specifiers.
    ///
    /// **Note:** Currently bones isn't very standardized as far as name generation for Rust or
    /// other language type names, and this is mostly for diagnostics. This may change in the future
    /// but for now there are no guarantees.
    pub full_name: Ustr,
    /// The kind of schema.
    pub kind: SchemaKind,
    /// Container for storing [`Schema`] type datas.
    ///
    /// "Type data" is extra data that is stored in a type's [`Schema`] that may be used for any number
    /// of different purposes.
    ///
    /// Each type data is a type that implements [`HasSchema`] and usually describes something about the
    /// type that has the schema. For instance, a type data could be added to a struct that can be used
    /// to serialize/deserialize that type.
    ///
    /// If a type data also implements [`FromType`] it can be derived for types that it implements
    /// [`FromType`] for:
    ///
    /// ```rust
    /// # use bones_schema::prelude::*;
    /// #[derive(HasSchema, Default, Clone)]
    /// struct SomeTypeData;
    ///
    /// impl<T> FromType<T> for SomeTypeData {
    ///     fn from_type() -> Self {
    ///         SomeTypeData
    ///     }
    /// }
    ///
    /// #[derive(HasSchema, Default, Clone)]
    /// #[derive_type_data(SomeTypeData)]
    /// struct MyData;
    /// ```
    pub type_data: TypeDatas,

    // NOTE: The fields below could be implemented as type datas, and it would be nicely elegant to
    // do so, but for performance reasons, we put them right in the [`Schema`] struct because
    // they're use is so common. If profiling does not reveal any performance issues with using them
    // as type datas, we may want to remove these fields in favor of the type data.
    /// The Rust [`TypeId`] that this [`Schema`] was created from, if it was created from a Rust
    /// type.
    pub type_id: Option<TypeId>,
    /// The function pointer that may be used to clone data with this schema.
    pub clone_fn:
        Option<Unsafe<&'static (dyn Fn(*const c_void, *mut c_void) + Sync + Send + 'static)>>,
    /// The function pointer that may be used to drop data with this schema.
    pub drop_fn: Option<Unsafe<&'static (dyn Fn(*mut c_void) + Sync + Send + 'static)>>,
    /// The function pointer that may be used to write a default value to a pointer.
    pub default_fn: Option<Unsafe<&'static (dyn Fn(*mut c_void) + Sync + Send + 'static)>>,
    /// The function pointer that may be used to hash the value.
    pub hash_fn: Option<Unsafe<&'static (dyn Fn(*const c_void) -> u64 + Sync + Send + 'static)>>,
    /// The function pointer that may be used to compare two values for equality. Note that this is
    /// total equality, not partial equality.
    pub eq_fn: Option<
        Unsafe<&'static (dyn Fn(*const c_void, *const c_void) -> bool + Sync + Send + 'static)>,
    >,
}

impl std::fmt::Debug for SchemaData {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("SchemaData")
            .field("name", &self.name)
            .field("full_name", &self.full_name)
            .field("kind", &self.kind)
            .field("type_data", &self.type_data)
            .field("type_id", &self.type_id)
            .finish_non_exhaustive()
    }
}

/// A wrapper struct that marks it unsafe to both create and access the inner value.
#[derive(Clone, Debug)]
pub struct Unsafe<T>(T);

impl<T> Unsafe<T> {
    /// Create a new [`Unsafe`] contianing the `value`.
    /// # Safety
    /// The safety invariants are dependent on the inner type.
    pub unsafe fn new(value: T) -> Self {
        Self(value)
    }

    /// Unsafely get the inner value.
    /// # Safety
    /// The safety invariants are dependent on the inner type.
    pub unsafe fn get(&self) -> &T {
        &self.0
    }
}

/// A schema describes the data layout of a type, to enable dynamic access to the type's data
/// through a pointer.
#[derive(Debug, Clone)]
pub enum SchemaKind {
    /// The type represents a struct.
    Struct(StructSchemaInfo),
    /// Type represents a [`SchemaVec`], where each item in the vec has the contained [`Schema`].
    ///
    /// The scripting solution must facilitate a way for scripts to access data in the [`Vec`] if it
    /// is to be readable/modifyable from scripts.
    Vec(&'static Schema),
    /// Type represents an enum, which in the C layout is called a tagged union.
    Enum(EnumSchemaInfo),
    /// Type represents a [`SchemaMap`].
    Map {
        /// The schema of the key type.
        key: &'static Schema,
        /// The schema of the value type.
        value: &'static Schema,
    },
    /// The represents a [`SchemaBox`] with given type inside.
    Box(&'static Schema),
    /// The type represents a primitive value.
    Primitive(Primitive),
}

impl SchemaKind {
    /// Get the primitive, if this is a primitive.
    pub fn as_primitive(&self) -> Option<&Primitive> {
        if let Self::Primitive(p) = self {
            Some(p)
        } else {
            None
        }
    }
    /// Get the struct, if this is a struct.
    pub fn as_struct(&self) -> Option<&StructSchemaInfo> {
        if let Self::Struct(s) = self {
            Some(s)
        } else {
            None
        }
    }
    /// Get the enum, if this is a enum.
    pub fn as_enum(&self) -> Option<&EnumSchemaInfo> {
        if let Self::Enum(e) = self {
            Some(e)
        } else {
            None
        }
    }
    /// Get the schema of the items in the vector, if this is a vector.
    pub fn as_vec(&self) -> Option<&'static Schema> {
        if let Self::Vec(v) = self {
            Some(v)
        } else {
            None
        }
    }
}

/// Layout information computed for [`SchemaData`].
#[derive(Debug, Clone)]
pub struct SchemaLayoutInfo<'a> {
    /// The layout of the type.
    pub layout: Layout,
    /// If this is a struct, then the field offsets will contain the byte offset from the front of
    /// the struct to each field in the order the fields are declared.
    ///
    /// If this is an enum, there will be exactly one entry specifying the offset from the beginning
    /// of the struct to the enum value.
    pub field_offsets: Vec<(Option<&'a str>, usize)>,
}

/// Schema data for a struct.
#[derive(Debug, Clone)]
pub struct StructSchemaInfo {
    /// The fields in the struct, in the order they are defined.
    pub fields: Vec<StructFieldInfo>,
}

/// Schema data for an enum.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct EnumSchemaInfo {
    /// The layout of the enum tag.
    pub tag_type: EnumTagType,
    /// Info for the enum variants.
    pub variants: Vec<VariantInfo>,
}

/// A type for an enum tag for [`EnumSchemaInfo`].
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum EnumTagType {
    /// A [`u8`].
    U8,
    /// A [`u16`].
    U16,
    /// A [`u32`].
    U32,
}

impl EnumTagType {
    /// Get the memory layout of the enum tag.
    pub fn layout(&self) -> Layout {
        match self {
            EnumTagType::U8 => Layout::new::<u8>(),
            EnumTagType::U16 => Layout::new::<u16>(),
            EnumTagType::U32 => Layout::new::<u32>(),
        }
    }
}

/// Information about an enum variant for [`EnumSchemaInfo`].
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct VariantInfo {
    /// The name of the enum variant.
    pub name: Cow<'static, str>,
    /// The schema of this variant.
    pub schema: &'static Schema,
}

/// A field in a [`StructSchemaInfo`].
#[derive(Debug, Clone)]
pub struct StructFieldInfo {
    /// The name of the field. Will be [`None`] if this is a field of a tuple struct.
    pub name: Option<Ustr>,
    /// The schema of the field.
    pub schema: &'static Schema,
    // TODO: Investigate adding attribute info to `StructFieldInfo`.
    // It could be very useful if the derive macro could capture custom attribute data for struct
    // fields and put it into the schema data. This would allow type data implementations that
    // implement `FromType` to have access to custom attributes that could be used to modify various
    // behavior, without requiring a new macro.
}

/// A type of primitive.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub enum Primitive {
    /// A boolean.
    Bool,
    /// [`u8`]
    U8,
    /// [`u16`]
    U16,
    /// [`u32`]
    U32,
    /// [`u64`]
    U64,
    /// [`u128`]
    U128,
    /// [`i8`]
    I8,
    /// [`i16`]
    I16,
    /// [`i32`]
    I32,
    /// [`i64`]
    I64,
    /// [`i128`]
    I128,
    /// [`f32`]
    F32,
    /// [`f64`]
    F64,
    /// A Rust [`String`]. Must be manipulated with Rust string methods.
    String,
    /// Opaque data that cannot described by a schema.
    Opaque {
        /// The size of the data.
        size: usize,
        /// The alignment of the data.
        align: usize,
    },
}

/// Trait implemented for types that can produce an instance of themselves from a Rust type.
///
/// This is useful for [type datas][`SchemaData::type_data`], which may be derived for a type if the type data
/// implements [`FromType`] for type that is deriving it.
pub trait FromType<T> {
    /// Return the data for the type.
    fn from_type() -> Self;
}

impl SchemaKind {
    /// Calculate the layout of the type represented by the schema.
    ///
    /// Usually you don't need to call this and should use the static, cached layout and field
    /// offsets from [`Schema::layout()`] and [`Schema::field_offsets()`].
    pub fn compute_layout_info(&self) -> SchemaLayoutInfo<'_> {
        let mut layout: Option<Layout> = None;
        let mut field_offsets = Vec::new();
        let mut offset;

        let extend_layout = |layout: &mut Option<Layout>, l| {
            if let Some(layout) = layout {
                let (new_layout, offset) = layout.extend(l).unwrap();
                *layout = new_layout;
                offset
            } else {
                *layout = Some(l);
                0
            }
        };

        match &self {
            SchemaKind::Struct(s) => {
                for field in &s.fields {
                    let field_layout_info = field.schema.kind.compute_layout_info();
                    offset = extend_layout(&mut layout, field_layout_info.layout);
                    field_offsets.push((field.name.as_deref(), offset));
                }
            }
            SchemaKind::Vec(_) => {
                extend_layout(&mut layout, Layout::new::<SchemaVec>());
            }
            SchemaKind::Box(_) => {
                extend_layout(&mut layout, Layout::new::<SchemaBox>());
            }
            SchemaKind::Map { .. } => {
                extend_layout(&mut layout, Layout::new::<SchemaMap>());
            }
            SchemaKind::Enum(e) => {
                let enum_tag_layout = e.tag_type.layout();
                extend_layout(&mut layout, enum_tag_layout);

                let mut enum_value_layout = Layout::from_size_align(0, 1).unwrap();
                // The enum layout is the greatest of it's variants sizes and aligments
                for var in &e.variants {
                    let var_layout = var.schema.layout();
                    if var_layout.size() > enum_value_layout.size() {
                        enum_value_layout =
                            Layout::from_size_align(var_layout.size(), enum_value_layout.align())
                                .unwrap();
                    }
                    if var_layout.align() > enum_value_layout.align() {
                        enum_value_layout =
                            Layout::from_size_align(enum_value_layout.size(), var_layout.align())
                                .unwrap();
                    }
                }
                let offset = extend_layout(&mut layout, enum_value_layout);
                // Enums have a single field offset that is the offset of the value part of the enum
                // comming after the discriminant.
                field_offsets.push((None, offset));
            }
            SchemaKind::Primitive(p) => {
                extend_layout(
                    &mut layout,
                    match p {
                        Primitive::Bool => Layout::new::<bool>(),
                        Primitive::U8 => Layout::new::<u8>(),
                        Primitive::U16 => Layout::new::<u16>(),
                        Primitive::U32 => Layout::new::<u32>(),
                        Primitive::U64 => Layout::new::<u64>(),
                        Primitive::U128 => Layout::new::<u128>(),
                        Primitive::I8 => Layout::new::<i8>(),
                        Primitive::I16 => Layout::new::<i16>(),
                        Primitive::I32 => Layout::new::<i32>(),
                        Primitive::I64 => Layout::new::<i64>(),
                        Primitive::I128 => Layout::new::<i128>(),
                        Primitive::F32 => Layout::new::<f32>(),
                        Primitive::F64 => Layout::new::<f64>(),
                        Primitive::String => Layout::new::<String>(),
                        Primitive::Opaque { size, align } => {
                            Layout::from_size_align(*size, *align).unwrap()
                        }
                    },
                );
            }
        }

        SchemaLayoutInfo {
            layout: layout
                // Handle ZST
                .unwrap_or_else(|| Layout::from_size_align(0, 1).unwrap())
                .pad_to_align(),
            field_offsets,
        }
    }

    /// Recursively checks whether or not the schema contains any [`Opaque`][Primitive::Opaque] primitives.
    pub fn has_opaque(&self) -> bool {
        match &self {
            SchemaKind::Struct(s) => s.fields.iter().any(|field| field.schema.kind.has_opaque()),
            SchemaKind::Vec(v) => v.kind.has_opaque(),
            SchemaKind::Box(b) => b.schema().kind.has_opaque(),
            SchemaKind::Enum(e) => e.variants.iter().any(|var| var.schema.kind.has_opaque()),
            SchemaKind::Map { key, value } => {
                key.schema().kind.has_opaque() || value.schema().kind.has_opaque()
            }
            SchemaKind::Primitive(p) => matches!(p, Primitive::Opaque { .. }),
        }
    }
}