pub struct SVD<T, R, C>where
T: ComplexField,
R: DimMin<C>,
C: Dim,
DefaultAllocator: Allocator<T, <R as DimMin<C>>::Output, C> + Allocator<T, R, <R as DimMin<C>>::Output> + Allocator<<T as ComplexField>::RealField, <R as DimMin<C>>::Output>,{
pub u: Option<Matrix<T, R, <R as DimMin<C>>::Output, <DefaultAllocator as Allocator<T, R, <R as DimMin<C>>::Output>>::Buffer>>,
pub v_t: Option<Matrix<T, <R as DimMin<C>>::Output, C, <DefaultAllocator as Allocator<T, <R as DimMin<C>>::Output, C>>::Buffer>>,
pub singular_values: Matrix<<T as ComplexField>::RealField, <R as DimMin<C>>::Output, Const<1>, <DefaultAllocator as Allocator<<T as ComplexField>::RealField, <R as DimMin<C>>::Output>>::Buffer>,
}Expand description
Singular Value Decomposition of a general matrix.
Fields§
§u: Option<Matrix<T, R, <R as DimMin<C>>::Output, <DefaultAllocator as Allocator<T, R, <R as DimMin<C>>::Output>>::Buffer>>The left-singular vectors U of this SVD.
v_t: Option<Matrix<T, <R as DimMin<C>>::Output, C, <DefaultAllocator as Allocator<T, <R as DimMin<C>>::Output, C>>::Buffer>>The right-singular vectors V^t of this SVD.
singular_values: Matrix<<T as ComplexField>::RealField, <R as DimMin<C>>::Output, Const<1>, <DefaultAllocator as Allocator<<T as ComplexField>::RealField, <R as DimMin<C>>::Output>>::Buffer>The singular values of this SVD.
Implementations§
source§impl<T, R, C> SVD<T, R, C>where
T: ComplexField,
R: DimMin<C>,
C: Dim,
<R as DimMin<C>>::Output: DimSub<Const<1>>,
DefaultAllocator: Allocator<T, R, C> + Allocator<T, C> + Allocator<T, R> + Allocator<T, <<R as DimMin<C>>::Output as DimSub<Const<1>>>::Output> + Allocator<T, <R as DimMin<C>>::Output, C> + Allocator<T, R, <R as DimMin<C>>::Output> + Allocator<T, <R as DimMin<C>>::Output> + Allocator<<T as ComplexField>::RealField, <R as DimMin<C>>::Output> + Allocator<<T as ComplexField>::RealField, <<R as DimMin<C>>::Output as DimSub<Const<1>>>::Output>,
impl<T, R, C> SVD<T, R, C>where
T: ComplexField,
R: DimMin<C>,
C: Dim,
<R as DimMin<C>>::Output: DimSub<Const<1>>,
DefaultAllocator: Allocator<T, R, C> + Allocator<T, C> + Allocator<T, R> + Allocator<T, <<R as DimMin<C>>::Output as DimSub<Const<1>>>::Output> + Allocator<T, <R as DimMin<C>>::Output, C> + Allocator<T, R, <R as DimMin<C>>::Output> + Allocator<T, <R as DimMin<C>>::Output> + Allocator<<T as ComplexField>::RealField, <R as DimMin<C>>::Output> + Allocator<<T as ComplexField>::RealField, <<R as DimMin<C>>::Output as DimSub<Const<1>>>::Output>,
sourcepub fn new_unordered(
matrix: Matrix<T, R, C, <DefaultAllocator as Allocator<T, R, C>>::Buffer>,
compute_u: bool,
compute_v: bool,
) -> SVD<T, R, C>
pub fn new_unordered( matrix: Matrix<T, R, C, <DefaultAllocator as Allocator<T, R, C>>::Buffer>, compute_u: bool, compute_v: bool, ) -> SVD<T, R, C>
Computes the Singular Value Decomposition of matrix using implicit shift.
The singular values are not guaranteed to be sorted in any particular order.
If a descending order is required, consider using new instead.
sourcepub fn try_new_unordered(
matrix: Matrix<T, R, C, <DefaultAllocator as Allocator<T, R, C>>::Buffer>,
compute_u: bool,
compute_v: bool,
eps: <T as ComplexField>::RealField,
max_niter: usize,
) -> Option<SVD<T, R, C>>
pub fn try_new_unordered( matrix: Matrix<T, R, C, <DefaultAllocator as Allocator<T, R, C>>::Buffer>, compute_u: bool, compute_v: bool, eps: <T as ComplexField>::RealField, max_niter: usize, ) -> Option<SVD<T, R, C>>
Attempts to compute the Singular Value Decomposition of matrix using implicit shift.
The singular values are not guaranteed to be sorted in any particular order.
If a descending order is required, consider using try_new instead.
§Arguments
compute_u− set this totrueto enable the computation of left-singular vectors.compute_v− set this totrueto enable the computation of right-singular vectors.eps− tolerance used to determine when a value converged to 0.max_niter− maximum total number of iterations performed by the algorithm. If this number of iteration is exceeded,Noneis returned. Ifniter == 0, then the algorithm continues indefinitely until convergence.
sourcepub fn rank(&self, eps: <T as ComplexField>::RealField) -> usize
pub fn rank(&self, eps: <T as ComplexField>::RealField) -> usize
Computes the rank of the decomposed matrix, i.e., the number of singular values greater
than eps.
sourcepub fn recompose(
self,
) -> Result<Matrix<T, R, C, <DefaultAllocator as Allocator<T, R, C>>::Buffer>, &'static str>
pub fn recompose( self, ) -> Result<Matrix<T, R, C, <DefaultAllocator as Allocator<T, R, C>>::Buffer>, &'static str>
Rebuild the original matrix.
This is useful if some of the singular values have been manually modified.
Returns Err if the right- and left- singular vectors have not been
computed at construction-time.
sourcepub fn pseudo_inverse(
self,
eps: <T as ComplexField>::RealField,
) -> Result<Matrix<T, C, R, <DefaultAllocator as Allocator<T, C, R>>::Buffer>, &'static str>where
DefaultAllocator: Allocator<T, C, R>,
pub fn pseudo_inverse(
self,
eps: <T as ComplexField>::RealField,
) -> Result<Matrix<T, C, R, <DefaultAllocator as Allocator<T, C, R>>::Buffer>, &'static str>where
DefaultAllocator: Allocator<T, C, R>,
Computes the pseudo-inverse of the decomposed matrix.
Any singular value smaller than eps is assumed to be zero.
Returns Err if the right- and left- singular vectors have not
been computed at construction-time.
sourcepub fn solve<R2, C2, S2>(
&self,
b: &Matrix<T, R2, C2, S2>,
eps: <T as ComplexField>::RealField,
) -> Result<Matrix<T, C, C2, <DefaultAllocator as Allocator<T, C, C2>>::Buffer>, &'static str>where
R2: Dim,
C2: Dim,
S2: Storage<T, R2, C2>,
DefaultAllocator: Allocator<T, C, C2> + Allocator<T, <R as DimMin<C>>::Output, C2>,
ShapeConstraint: SameNumberOfRows<R, R2>,
pub fn solve<R2, C2, S2>(
&self,
b: &Matrix<T, R2, C2, S2>,
eps: <T as ComplexField>::RealField,
) -> Result<Matrix<T, C, C2, <DefaultAllocator as Allocator<T, C, C2>>::Buffer>, &'static str>where
R2: Dim,
C2: Dim,
S2: Storage<T, R2, C2>,
DefaultAllocator: Allocator<T, C, C2> + Allocator<T, <R as DimMin<C>>::Output, C2>,
ShapeConstraint: SameNumberOfRows<R, R2>,
Solves the system self * x = b where self is the decomposed matrix and x the unknown.
Any singular value smaller than eps is assumed to be zero.
Returns Err if the singular vectors U and V have not been computed.
sourcepub fn to_polar(
&self,
) -> Option<(Matrix<T, R, R, <DefaultAllocator as Allocator<T, R, R>>::Buffer>, Matrix<T, R, C, <DefaultAllocator as Allocator<T, R, C>>::Buffer>)>
pub fn to_polar( &self, ) -> Option<(Matrix<T, R, R, <DefaultAllocator as Allocator<T, R, R>>::Buffer>, Matrix<T, R, C, <DefaultAllocator as Allocator<T, R, C>>::Buffer>)>
converts SVD results to Polar decomposition form of the original Matrix: A = P' * U.
The polar decomposition used here is Left Polar Decomposition (or Reverse Polar Decomposition) Returns None if the singular vectors of the SVD haven’t been calculated
source§impl<T, R, C> SVD<T, R, C>where
T: ComplexField,
R: DimMin<C>,
C: Dim,
<R as DimMin<C>>::Output: DimSub<Const<1>>,
DefaultAllocator: Allocator<T, R, C> + Allocator<T, C> + Allocator<T, R> + Allocator<T, <<R as DimMin<C>>::Output as DimSub<Const<1>>>::Output> + Allocator<T, <R as DimMin<C>>::Output, C> + Allocator<T, R, <R as DimMin<C>>::Output> + Allocator<T, <R as DimMin<C>>::Output> + Allocator<<T as ComplexField>::RealField, <R as DimMin<C>>::Output> + Allocator<<T as ComplexField>::RealField, <<R as DimMin<C>>::Output as DimSub<Const<1>>>::Output> + Allocator<(usize, usize), <R as DimMin<C>>::Output> + Allocator<(<T as ComplexField>::RealField, usize), <R as DimMin<C>>::Output>,
impl<T, R, C> SVD<T, R, C>where
T: ComplexField,
R: DimMin<C>,
C: Dim,
<R as DimMin<C>>::Output: DimSub<Const<1>>,
DefaultAllocator: Allocator<T, R, C> + Allocator<T, C> + Allocator<T, R> + Allocator<T, <<R as DimMin<C>>::Output as DimSub<Const<1>>>::Output> + Allocator<T, <R as DimMin<C>>::Output, C> + Allocator<T, R, <R as DimMin<C>>::Output> + Allocator<T, <R as DimMin<C>>::Output> + Allocator<<T as ComplexField>::RealField, <R as DimMin<C>>::Output> + Allocator<<T as ComplexField>::RealField, <<R as DimMin<C>>::Output as DimSub<Const<1>>>::Output> + Allocator<(usize, usize), <R as DimMin<C>>::Output> + Allocator<(<T as ComplexField>::RealField, usize), <R as DimMin<C>>::Output>,
sourcepub fn new(
matrix: Matrix<T, R, C, <DefaultAllocator as Allocator<T, R, C>>::Buffer>,
compute_u: bool,
compute_v: bool,
) -> SVD<T, R, C>
pub fn new( matrix: Matrix<T, R, C, <DefaultAllocator as Allocator<T, R, C>>::Buffer>, compute_u: bool, compute_v: bool, ) -> SVD<T, R, C>
Computes the Singular Value Decomposition of matrix using implicit shift.
The singular values are guaranteed to be sorted in descending order.
If this order is not required consider using new_unordered.
sourcepub fn try_new(
matrix: Matrix<T, R, C, <DefaultAllocator as Allocator<T, R, C>>::Buffer>,
compute_u: bool,
compute_v: bool,
eps: <T as ComplexField>::RealField,
max_niter: usize,
) -> Option<SVD<T, R, C>>
pub fn try_new( matrix: Matrix<T, R, C, <DefaultAllocator as Allocator<T, R, C>>::Buffer>, compute_u: bool, compute_v: bool, eps: <T as ComplexField>::RealField, max_niter: usize, ) -> Option<SVD<T, R, C>>
Attempts to compute the Singular Value Decomposition of matrix using implicit shift.
The singular values are guaranteed to be sorted in descending order.
If this order is not required consider using try_new_unordered.
§Arguments
compute_u− set this totrueto enable the computation of left-singular vectors.compute_v− set this totrueto enable the computation of right-singular vectors.eps− tolerance used to determine when a value converged to 0.max_niter− maximum total number of iterations performed by the algorithm. If this number of iteration is exceeded,Noneis returned. Ifniter == 0, then the algorithm continues indefinitely until convergence.
sourcepub fn sort_by_singular_values(&mut self)
pub fn sort_by_singular_values(&mut self)
Sort the estimated components of the SVD by its singular values in descending order.
Such an ordering is often implicitly required when the decompositions are used for estimation or fitting purposes.
Using this function is only required if new_unordered or try_new_unordered were used and the specific sorting is required afterward.
Trait Implementations§
impl<T, R, C> Copy for SVD<T, R, C>where
T: ComplexField,
R: DimMin<C>,
C: Dim,
DefaultAllocator: Allocator<T, <R as DimMin<C>>::Output, C> + Allocator<T, R, <R as DimMin<C>>::Output> + Allocator<<T as ComplexField>::RealField, <R as DimMin<C>>::Output>,
Matrix<T, R, <R as DimMin<C>>::Output, <DefaultAllocator as Allocator<T, R, <R as DimMin<C>>::Output>>::Buffer>: Copy,
Matrix<T, <R as DimMin<C>>::Output, C, <DefaultAllocator as Allocator<T, <R as DimMin<C>>::Output, C>>::Buffer>: Copy,
Matrix<<T as ComplexField>::RealField, <R as DimMin<C>>::Output, Const<1>, <DefaultAllocator as Allocator<<T as ComplexField>::RealField, <R as DimMin<C>>::Output>>::Buffer>: Copy,
Auto Trait Implementations§
impl<T, R, C> !Freeze for SVD<T, R, C>
impl<T, R, C> !RefUnwindSafe for SVD<T, R, C>
impl<T, R, C> !Send for SVD<T, R, C>
impl<T, R, C> !Sync for SVD<T, R, C>
impl<T, R, C> !Unpin for SVD<T, R, C>
impl<T, R, C> !UnwindSafe for SVD<T, R, C>
Blanket Implementations§
§impl<T, U> AsBindGroupShaderType<U> for T
impl<T, U> AsBindGroupShaderType<U> for T
§fn as_bind_group_shader_type(&self, _images: &RenderAssets<Image>) -> U
fn as_bind_group_shader_type(&self, _images: &RenderAssets<Image>) -> U
T [ShaderType] for self. When used in [AsBindGroup]
derives, it is safe to assume that all images in self exist.§impl<'a, T, E> AsTaggedExplicit<'a, E> for Twhere
T: 'a,
impl<'a, T, E> AsTaggedExplicit<'a, E> for Twhere
T: 'a,
§impl<'a, T, E> AsTaggedImplicit<'a, E> for Twhere
T: 'a,
impl<'a, T, E> AsTaggedImplicit<'a, E> for Twhere
T: 'a,
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> CloneToUninit for Twhere
T: Copy,
impl<T> CloneToUninit for Twhere
T: Copy,
source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit)source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§default unsafe fn clone_to_uninit(&self, dst: *mut T)
default unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit)§impl<T> Conv for T
impl<T> Conv for T
§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can
then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be
further downcast into Rc<ConcreteType> where ConcreteType implements Trait.§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
&Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &Any’s vtable from &Trait’s.§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &mut Any’s vtable from &mut Trait’s.§impl<T> DowncastSync for T
impl<T> DowncastSync for T
§impl<T> FmtForward for T
impl<T> FmtForward for T
§fn fmt_binary(self) -> FmtBinary<Self>where
Self: Binary,
fn fmt_binary(self) -> FmtBinary<Self>where
Self: Binary,
self to use its Binary implementation when Debug-formatted.§fn fmt_display(self) -> FmtDisplay<Self>where
Self: Display,
fn fmt_display(self) -> FmtDisplay<Self>where
Self: Display,
self to use its Display implementation when
Debug-formatted.§fn fmt_lower_exp(self) -> FmtLowerExp<Self>where
Self: LowerExp,
fn fmt_lower_exp(self) -> FmtLowerExp<Self>where
Self: LowerExp,
self to use its LowerExp implementation when
Debug-formatted.§fn fmt_lower_hex(self) -> FmtLowerHex<Self>where
Self: LowerHex,
fn fmt_lower_hex(self) -> FmtLowerHex<Self>where
Self: LowerHex,
self to use its LowerHex implementation when
Debug-formatted.§fn fmt_octal(self) -> FmtOctal<Self>where
Self: Octal,
fn fmt_octal(self) -> FmtOctal<Self>where
Self: Octal,
self to use its Octal implementation when Debug-formatted.§fn fmt_pointer(self) -> FmtPointer<Self>where
Self: Pointer,
fn fmt_pointer(self) -> FmtPointer<Self>where
Self: Pointer,
self to use its Pointer implementation when
Debug-formatted.§fn fmt_upper_exp(self) -> FmtUpperExp<Self>where
Self: UpperExp,
fn fmt_upper_exp(self) -> FmtUpperExp<Self>where
Self: UpperExp,
self to use its UpperExp implementation when
Debug-formatted.§fn fmt_upper_hex(self) -> FmtUpperHex<Self>where
Self: UpperHex,
fn fmt_upper_hex(self) -> FmtUpperHex<Self>where
Self: UpperHex,
self to use its UpperHex implementation when
Debug-formatted.§fn fmt_list(self) -> FmtList<Self>where
&'a Self: for<'a> IntoIterator,
fn fmt_list(self) -> FmtList<Self>where
&'a Self: for<'a> IntoIterator,
§impl<S> FromSample<S> for S
impl<S> FromSample<S> for S
fn from_sample_(s: S) -> S
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
§impl<T> IntoArcAny for T
impl<T> IntoArcAny for T
source§impl<T> IntoEither for T
impl<T> IntoEither for T
source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moresource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more§impl<F, T> IntoSample<T> for Fwhere
T: FromSample<F>,
impl<F, T> IntoSample<T> for Fwhere
T: FromSample<F>,
fn into_sample(self) -> T
§impl<T> Pipe for Twhere
T: ?Sized,
impl<T> Pipe for Twhere
T: ?Sized,
§fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> Rwhere
Self: Sized,
fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> Rwhere
Self: Sized,
§fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> Rwhere
R: 'a,
fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> Rwhere
R: 'a,
self and passes that borrow into the pipe function. Read more§fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> Rwhere
R: 'a,
fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> Rwhere
R: 'a,
self and passes that borrow into the pipe function. Read more§fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
§fn pipe_borrow_mut<'a, B, R>(
&'a mut self,
func: impl FnOnce(&'a mut B) -> R,
) -> R
fn pipe_borrow_mut<'a, B, R>( &'a mut self, func: impl FnOnce(&'a mut B) -> R, ) -> R
§fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
self, then passes self.as_ref() into the pipe function.§fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
self, then passes self.as_mut() into the pipe
function.§fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
self, then passes self.deref() into the pipe function.§impl<T> Pointable for T
impl<T> Pointable for T
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self is actually part of its subset T (and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self to the equivalent element of its superset.§impl<T> Tap for T
impl<T> Tap for T
§fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
Borrow<B> of a value. Read more§fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
BorrowMut<B> of a value. Read more§fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
AsRef<R> view of a value. Read more§fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
AsMut<R> view of a value. Read more§fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
Deref::Target of a value. Read more§fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
Deref::Target of a value. Read more§fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self
fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self
.tap() only in debug builds, and is erased in release builds.§fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self
fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self
.tap_mut() only in debug builds, and is erased in release
builds.§fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
.tap_borrow() only in debug builds, and is erased in release
builds.§fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
.tap_borrow_mut() only in debug builds, and is erased in release
builds.§fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
.tap_ref() only in debug builds, and is erased in release
builds.§fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
.tap_ref_mut() only in debug builds, and is erased in release
builds.§fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
.tap_deref() only in debug builds, and is erased in release
builds.