Struct jumpy::core::physics::collisions::rapier::nalgebra::SVD

source ·
pub struct SVD<T, R, C>
where T: ComplexField, R: DimMin<C>, C: Dim, DefaultAllocator: Allocator<T, <R as DimMin<C>>::Output, C> + Allocator<T, R, <R as DimMin<C>>::Output> + Allocator<<T as ComplexField>::RealField, <R as DimMin<C>>::Output>,
{ pub u: Option<Matrix<T, R, <R as DimMin<C>>::Output, <DefaultAllocator as Allocator<T, R, <R as DimMin<C>>::Output>>::Buffer>>, pub v_t: Option<Matrix<T, <R as DimMin<C>>::Output, C, <DefaultAllocator as Allocator<T, <R as DimMin<C>>::Output, C>>::Buffer>>, pub singular_values: Matrix<<T as ComplexField>::RealField, <R as DimMin<C>>::Output, Const<1>, <DefaultAllocator as Allocator<<T as ComplexField>::RealField, <R as DimMin<C>>::Output>>::Buffer>, }
Expand description

Singular Value Decomposition of a general matrix.

Fields§

§u: Option<Matrix<T, R, <R as DimMin<C>>::Output, <DefaultAllocator as Allocator<T, R, <R as DimMin<C>>::Output>>::Buffer>>

The left-singular vectors U of this SVD.

§v_t: Option<Matrix<T, <R as DimMin<C>>::Output, C, <DefaultAllocator as Allocator<T, <R as DimMin<C>>::Output, C>>::Buffer>>

The right-singular vectors V^t of this SVD.

§singular_values: Matrix<<T as ComplexField>::RealField, <R as DimMin<C>>::Output, Const<1>, <DefaultAllocator as Allocator<<T as ComplexField>::RealField, <R as DimMin<C>>::Output>>::Buffer>

The singular values of this SVD.

Implementations§

source§

impl<T, R, C> SVD<T, R, C>
where T: ComplexField, R: DimMin<C>, C: Dim, <R as DimMin<C>>::Output: DimSub<Const<1>>, DefaultAllocator: Allocator<T, R, C> + Allocator<T, C> + Allocator<T, R> + Allocator<T, <<R as DimMin<C>>::Output as DimSub<Const<1>>>::Output> + Allocator<T, <R as DimMin<C>>::Output, C> + Allocator<T, R, <R as DimMin<C>>::Output> + Allocator<T, <R as DimMin<C>>::Output> + Allocator<<T as ComplexField>::RealField, <R as DimMin<C>>::Output> + Allocator<<T as ComplexField>::RealField, <<R as DimMin<C>>::Output as DimSub<Const<1>>>::Output>,

source

pub fn new_unordered( matrix: Matrix<T, R, C, <DefaultAllocator as Allocator<T, R, C>>::Buffer>, compute_u: bool, compute_v: bool, ) -> SVD<T, R, C>

Computes the Singular Value Decomposition of matrix using implicit shift. The singular values are not guaranteed to be sorted in any particular order. If a descending order is required, consider using new instead.

source

pub fn try_new_unordered( matrix: Matrix<T, R, C, <DefaultAllocator as Allocator<T, R, C>>::Buffer>, compute_u: bool, compute_v: bool, eps: <T as ComplexField>::RealField, max_niter: usize, ) -> Option<SVD<T, R, C>>

Attempts to compute the Singular Value Decomposition of matrix using implicit shift. The singular values are not guaranteed to be sorted in any particular order. If a descending order is required, consider using try_new instead.

§Arguments
  • compute_u − set this to true to enable the computation of left-singular vectors.
  • compute_v − set this to true to enable the computation of right-singular vectors.
  • eps − tolerance used to determine when a value converged to 0.
  • max_niter − maximum total number of iterations performed by the algorithm. If this number of iteration is exceeded, None is returned. If niter == 0, then the algorithm continues indefinitely until convergence.
source

pub fn rank(&self, eps: <T as ComplexField>::RealField) -> usize

Computes the rank of the decomposed matrix, i.e., the number of singular values greater than eps.

source

pub fn recompose( self, ) -> Result<Matrix<T, R, C, <DefaultAllocator as Allocator<T, R, C>>::Buffer>, &'static str>

Rebuild the original matrix.

This is useful if some of the singular values have been manually modified. Returns Err if the right- and left- singular vectors have not been computed at construction-time.

source

pub fn pseudo_inverse( self, eps: <T as ComplexField>::RealField, ) -> Result<Matrix<T, C, R, <DefaultAllocator as Allocator<T, C, R>>::Buffer>, &'static str>
where DefaultAllocator: Allocator<T, C, R>,

Computes the pseudo-inverse of the decomposed matrix.

Any singular value smaller than eps is assumed to be zero. Returns Err if the right- and left- singular vectors have not been computed at construction-time.

source

pub fn solve<R2, C2, S2>( &self, b: &Matrix<T, R2, C2, S2>, eps: <T as ComplexField>::RealField, ) -> Result<Matrix<T, C, C2, <DefaultAllocator as Allocator<T, C, C2>>::Buffer>, &'static str>
where R2: Dim, C2: Dim, S2: Storage<T, R2, C2>, DefaultAllocator: Allocator<T, C, C2> + Allocator<T, <R as DimMin<C>>::Output, C2>, ShapeConstraint: SameNumberOfRows<R, R2>,

Solves the system self * x = b where self is the decomposed matrix and x the unknown.

Any singular value smaller than eps is assumed to be zero. Returns Err if the singular vectors U and V have not been computed.

source

pub fn to_polar( &self, ) -> Option<(Matrix<T, R, R, <DefaultAllocator as Allocator<T, R, R>>::Buffer>, Matrix<T, R, C, <DefaultAllocator as Allocator<T, R, C>>::Buffer>)>
where DefaultAllocator: Allocator<T, R, C> + Allocator<T, <R as DimMin<C>>::Output, R> + Allocator<T, <R as DimMin<C>>::Output> + Allocator<T, R, R> + Allocator<T, <R as DimMin<C>>::Output, <R as DimMin<C>>::Output>,

converts SVD results to Polar decomposition form of the original Matrix: A = P' * U.

The polar decomposition used here is Left Polar Decomposition (or Reverse Polar Decomposition) Returns None if the singular vectors of the SVD haven’t been calculated

source§

impl<T, R, C> SVD<T, R, C>
where T: ComplexField, R: DimMin<C>, C: Dim, <R as DimMin<C>>::Output: DimSub<Const<1>>, DefaultAllocator: Allocator<T, R, C> + Allocator<T, C> + Allocator<T, R> + Allocator<T, <<R as DimMin<C>>::Output as DimSub<Const<1>>>::Output> + Allocator<T, <R as DimMin<C>>::Output, C> + Allocator<T, R, <R as DimMin<C>>::Output> + Allocator<T, <R as DimMin<C>>::Output> + Allocator<<T as ComplexField>::RealField, <R as DimMin<C>>::Output> + Allocator<<T as ComplexField>::RealField, <<R as DimMin<C>>::Output as DimSub<Const<1>>>::Output> + Allocator<(usize, usize), <R as DimMin<C>>::Output> + Allocator<(<T as ComplexField>::RealField, usize), <R as DimMin<C>>::Output>,

source

pub fn new( matrix: Matrix<T, R, C, <DefaultAllocator as Allocator<T, R, C>>::Buffer>, compute_u: bool, compute_v: bool, ) -> SVD<T, R, C>

Computes the Singular Value Decomposition of matrix using implicit shift. The singular values are guaranteed to be sorted in descending order. If this order is not required consider using new_unordered.

source

pub fn try_new( matrix: Matrix<T, R, C, <DefaultAllocator as Allocator<T, R, C>>::Buffer>, compute_u: bool, compute_v: bool, eps: <T as ComplexField>::RealField, max_niter: usize, ) -> Option<SVD<T, R, C>>

Attempts to compute the Singular Value Decomposition of matrix using implicit shift. The singular values are guaranteed to be sorted in descending order. If this order is not required consider using try_new_unordered.

§Arguments
  • compute_u − set this to true to enable the computation of left-singular vectors.
  • compute_v − set this to true to enable the computation of right-singular vectors.
  • eps − tolerance used to determine when a value converged to 0.
  • max_niter − maximum total number of iterations performed by the algorithm. If this number of iteration is exceeded, None is returned. If niter == 0, then the algorithm continues indefinitely until convergence.
source

pub fn sort_by_singular_values(&mut self)

Sort the estimated components of the SVD by its singular values in descending order. Such an ordering is often implicitly required when the decompositions are used for estimation or fitting purposes. Using this function is only required if new_unordered or try_new_unordered were used and the specific sorting is required afterward.

Trait Implementations§

source§

impl<T, R, C> Clone for SVD<T, R, C>
where T: Clone + ComplexField, R: Clone + DimMin<C>, C: Clone + Dim, DefaultAllocator: Allocator<T, <R as DimMin<C>>::Output, C> + Allocator<T, R, <R as DimMin<C>>::Output> + Allocator<<T as ComplexField>::RealField, <R as DimMin<C>>::Output>, <T as ComplexField>::RealField: Clone,

source§

fn clone(&self) -> SVD<T, R, C>

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl<T, R, C> Debug for SVD<T, R, C>
where T: Debug + ComplexField, R: Debug + DimMin<C>, C: Debug + Dim, DefaultAllocator: Allocator<T, <R as DimMin<C>>::Output, C> + Allocator<T, R, <R as DimMin<C>>::Output> + Allocator<<T as ComplexField>::RealField, <R as DimMin<C>>::Output>, <T as ComplexField>::RealField: Debug,

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
source§

impl<T, R, C> Copy for SVD<T, R, C>
where T: ComplexField, R: DimMin<C>, C: Dim, DefaultAllocator: Allocator<T, <R as DimMin<C>>::Output, C> + Allocator<T, R, <R as DimMin<C>>::Output> + Allocator<<T as ComplexField>::RealField, <R as DimMin<C>>::Output>, Matrix<T, R, <R as DimMin<C>>::Output, <DefaultAllocator as Allocator<T, R, <R as DimMin<C>>::Output>>::Buffer>: Copy, Matrix<T, <R as DimMin<C>>::Output, C, <DefaultAllocator as Allocator<T, <R as DimMin<C>>::Output, C>>::Buffer>: Copy, Matrix<<T as ComplexField>::RealField, <R as DimMin<C>>::Output, Const<1>, <DefaultAllocator as Allocator<<T as ComplexField>::RealField, <R as DimMin<C>>::Output>>::Buffer>: Copy,

Auto Trait Implementations§

§

impl<T, R, C> !Freeze for SVD<T, R, C>

§

impl<T, R, C> !RefUnwindSafe for SVD<T, R, C>

§

impl<T, R, C> !Send for SVD<T, R, C>

§

impl<T, R, C> !Sync for SVD<T, R, C>

§

impl<T, R, C> !Unpin for SVD<T, R, C>

§

impl<T, R, C> !UnwindSafe for SVD<T, R, C>

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
§

impl<T, U> AsBindGroupShaderType<U> for T
where U: ShaderType, &'a T: for<'a> Into<U>,

§

fn as_bind_group_shader_type(&self, _images: &RenderAssets<Image>) -> U

Return the T [ShaderType] for self. When used in [AsBindGroup] derives, it is safe to assume that all images in self exist.
§

impl<'a, T, E> AsTaggedExplicit<'a, E> for T
where T: 'a,

§

fn explicit(self, class: Class, tag: u32) -> TaggedParser<'a, Explicit, Self, E>

§

impl<'a, T, E> AsTaggedImplicit<'a, E> for T
where T: 'a,

§

fn implicit( self, class: Class, constructed: bool, tag: u32, ) -> TaggedParser<'a, Implicit, Self, E>

source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> CloneToUninit for T
where T: Copy,

source§

unsafe fn clone_to_uninit(&self, dst: *mut T)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
source§

impl<T> CloneToUninit for T
where T: Clone,

source§

default unsafe fn clone_to_uninit(&self, dst: *mut T)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
§

impl<T> Conv for T

§

fn conv<T>(self) -> T
where Self: Into<T>,

Converts self into T using Into<T>. Read more
§

impl<T> Downcast<T> for T

§

fn downcast(&self) -> &T

§

impl<T> Downcast for T
where T: Any,

§

fn into_any(self: Box<T>) -> Box<dyn Any>

Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.
§

fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>

Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
§

fn as_any(&self) -> &(dyn Any + 'static)

Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
§

impl<T> DowncastSync for T
where T: Any + Send + Sync,

§

fn into_any_arc(self: Arc<T>) -> Arc<dyn Any + Send + Sync>

Convert Arc<Trait> (where Trait: Downcast) to Arc<Any>. Arc<Any> can then be further downcast into Arc<ConcreteType> where ConcreteType implements Trait.
source§

impl<T> DynClone for T
where T: Clone,

§

impl<T> FmtForward for T

§

fn fmt_binary(self) -> FmtBinary<Self>
where Self: Binary,

Causes self to use its Binary implementation when Debug-formatted.
§

fn fmt_display(self) -> FmtDisplay<Self>
where Self: Display,

Causes self to use its Display implementation when Debug-formatted.
§

fn fmt_lower_exp(self) -> FmtLowerExp<Self>
where Self: LowerExp,

Causes self to use its LowerExp implementation when Debug-formatted.
§

fn fmt_lower_hex(self) -> FmtLowerHex<Self>
where Self: LowerHex,

Causes self to use its LowerHex implementation when Debug-formatted.
§

fn fmt_octal(self) -> FmtOctal<Self>
where Self: Octal,

Causes self to use its Octal implementation when Debug-formatted.
§

fn fmt_pointer(self) -> FmtPointer<Self>
where Self: Pointer,

Causes self to use its Pointer implementation when Debug-formatted.
§

fn fmt_upper_exp(self) -> FmtUpperExp<Self>
where Self: UpperExp,

Causes self to use its UpperExp implementation when Debug-formatted.
§

fn fmt_upper_hex(self) -> FmtUpperHex<Self>
where Self: UpperHex,

Causes self to use its UpperHex implementation when Debug-formatted.
§

fn fmt_list(self) -> FmtList<Self>
where &'a Self: for<'a> IntoIterator,

Formats each item in a sequence. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<S> FromSample<S> for S

§

fn from_sample_(s: S) -> S

§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided [Span], returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> IntoEither for T

source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
§

impl<F, T> IntoSample<T> for F
where T: FromSample<F>,

§

fn into_sample(self) -> T

§

impl<T> Pipe for T
where T: ?Sized,

§

fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> R
where Self: Sized,

Pipes by value. This is generally the method you want to use. Read more
§

fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> R
where R: 'a,

Borrows self and passes that borrow into the pipe function. Read more
§

fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> R
where R: 'a,

Mutably borrows self and passes that borrow into the pipe function. Read more
§

fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
where Self: Borrow<B>, B: 'a + ?Sized, R: 'a,

Borrows self, then passes self.borrow() into the pipe function. Read more
§

fn pipe_borrow_mut<'a, B, R>( &'a mut self, func: impl FnOnce(&'a mut B) -> R, ) -> R
where Self: BorrowMut<B>, B: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.borrow_mut() into the pipe function. Read more
§

fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
where Self: AsRef<U>, U: 'a + ?Sized, R: 'a,

Borrows self, then passes self.as_ref() into the pipe function.
§

fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
where Self: AsMut<U>, U: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.as_mut() into the pipe function.
§

fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
where Self: Deref<Target = T>, T: 'a + ?Sized, R: 'a,

Borrows self, then passes self.deref() into the pipe function.
§

fn pipe_deref_mut<'a, T, R>( &'a mut self, func: impl FnOnce(&'a mut T) -> R, ) -> R
where Self: DerefMut<Target = T> + Deref, T: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.deref_mut() into the pipe function.
§

impl<T> Pointable for T

§

const ALIGN: usize = _

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
§

impl<T> RawClone for T
where T: Clone,

§

unsafe fn raw_clone(src: *const c_void, dst: *mut c_void)

Write the default value of the type to the pointer. Read more
§

fn raw_clone_cb() -> Unsafe<&'static (dyn Fn(*const c_void, *mut c_void) + Send + Sync)>

Get a callback suitable for [SchemaData].
§

impl<T> RawDrop for T

§

unsafe fn raw_drop(ptr: *mut c_void)

Write the default value of the type to the pointer. Read more
§

fn raw_drop_cb() -> Unsafe<&'static (dyn Fn(*mut c_void) + Send + Sync)>

Get a callback suitable for [SchemaData].
source§

impl<T> Same for T

§

type Output = T

Should always be Self
§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
§

impl<T> Tap for T

§

fn tap(self, func: impl FnOnce(&Self)) -> Self

Immutable access to a value. Read more
§

fn tap_mut(self, func: impl FnOnce(&mut Self)) -> Self

Mutable access to a value. Read more
§

fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Immutable access to the Borrow<B> of a value. Read more
§

fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Mutable access to the BorrowMut<B> of a value. Read more
§

fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Immutable access to the AsRef<R> view of a value. Read more
§

fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Mutable access to the AsMut<R> view of a value. Read more
§

fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Immutable access to the Deref::Target of a value. Read more
§

fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Mutable access to the Deref::Target of a value. Read more
§

fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self

Calls .tap() only in debug builds, and is erased in release builds.
§

fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self

Calls .tap_mut() only in debug builds, and is erased in release builds.
§

fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Calls .tap_borrow() only in debug builds, and is erased in release builds.
§

fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Calls .tap_borrow_mut() only in debug builds, and is erased in release builds.
§

fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Calls .tap_ref() only in debug builds, and is erased in release builds.
§

fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Calls .tap_ref_mut() only in debug builds, and is erased in release builds.
§

fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Calls .tap_deref() only in debug builds, and is erased in release builds.
§

fn tap_deref_mut_dbg<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Calls .tap_deref_mut() only in debug builds, and is erased in release builds.
source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
§

impl<T, U> ToSample<U> for T
where U: FromSample<T>,

§

fn to_sample_(self) -> U

§

impl<T> TryConv for T

§

fn try_conv<T>(self) -> Result<T, Self::Error>
where Self: TryInto<T>,

Attempts to convert self into T using TryInto<T>. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<T> TypeData for T
where T: 'static + Send + Sync + Clone,

§

fn clone_type_data(&self) -> Box<dyn TypeData>

§

impl<T> Upcast<T> for T

§

fn upcast(&self) -> Option<&T>

§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

impl<S, T> Duplex<S> for T
where T: FromSample<S> + ToSample<S>,

§

impl<T> SerializableAny for T
where T: 'static + Any + Clone + for<'a> Send + Sync,