1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
//! Map randomizer using [Shiftnanigans](https://github.com/AustinHellerRepo/Shiftnanigans).
use std::{cell::RefCell, rc::Rc};
use super::MapConstructor;
use crate::prelude::*;
use ::shiftnanigans::pixel_board::{
pixel_board_randomizer::PixelBoardRandomizer, Pixel, PixelBoard,
};
/// Map randomizer using [Shiftnanigans](https://github.com/AustinHellerRepo/Shiftnanigans).
pub struct ShiftnanigansMapConstructor {
pixel_board_randomizer: PixelBoardRandomizer<PixelType>,
compressed_top_height: usize,
compressed_left_width: usize,
tile_size: Vec2,
}
impl ShiftnanigansMapConstructor {
pub fn new(
map_size: UVec2,
tile_size: Vec2,
tile_layers: &[LocatedTileLayer],
element_layers: &[ElementLayer],
) -> ShiftnanigansMapConstructor {
// . map tiles and elements into pixel types
// . run pixel randomizer
// . transform tiles and elements based on where they exist in the randomized map
let mut ungrouped_pixel_per_y_per_x: Vec<Vec<Option<UngroupedPixel>>> = Vec::new();
for x in 0..map_size.x {
let mut ungrouped_pixel_per_y: Vec<Option<UngroupedPixel>> = Vec::new();
for y in 0..map_size.y {
let ungrouped_pixel_option =
UngroupedPixel::from_layers_and_location(tile_layers, element_layers, x, y);
ungrouped_pixel_per_y.push(ungrouped_pixel_option);
}
ungrouped_pixel_per_y_per_x.push(ungrouped_pixel_per_y);
}
let top_height;
'get_top_height: {
for y in 0..map_size.y as usize {
// if any column is missing a pixel, then the ceiling wall is as thick as the current value of 'y'
for ungrouped_pixel_per_y in ungrouped_pixel_per_y_per_x.iter() {
if ungrouped_pixel_per_y[y].is_none() {
top_height = y;
break 'get_top_height;
}
}
}
top_height = map_size.y as usize;
}
let left_width;
'get_left_width: {
for (x, ungrouped_pixel_per_y) in ungrouped_pixel_per_y_per_x.iter().enumerate() {
for ungrouped_pixel in ungrouped_pixel_per_y.iter() {
if ungrouped_pixel.is_none() {
left_width = x;
break 'get_left_width;
}
}
}
left_width = map_size.x as usize;
}
let bottom_height;
'get_bottom_height: {
for y in (0..map_size.y as usize).rev() {
for ungrouped_pixel_per_y in ungrouped_pixel_per_y_per_x.iter() {
if ungrouped_pixel_per_y[y].is_none() {
bottom_height = map_size.y as usize - y - 1;
break 'get_bottom_height;
}
}
}
bottom_height = 0; // pretend the bottom is missing since the top_height must also be the entire height
}
let right_width;
'get_right_width: {
for (x, ungrouped_pixel_per_y) in ungrouped_pixel_per_y_per_x.iter().enumerate().rev() {
for ungrouped_pixel in ungrouped_pixel_per_y.iter() {
if ungrouped_pixel.is_none() {
right_width = map_size.x as usize - x - 1;
break 'get_right_width;
}
}
}
right_width = 0; // pretend the right is missing since the left_width must also be the entire width
}
let composite_map_width =
map_size.x as usize - std::cmp::max(left_width, 1) - std::cmp::max(right_width, 1) + 2;
let composite_map_height =
map_size.y as usize - std::cmp::max(top_height, 1) - std::cmp::max(bottom_height, 1)
+ 2;
let mut grouped_pixels_per_y_per_x: Vec<Vec<Vec<GroupedPixel>>> =
Vec::with_capacity(composite_map_width);
for _ in 0..composite_map_width {
let mut grouped_pixels_per_y: Vec<Vec<GroupedPixel>> =
Vec::with_capacity(composite_map_height);
for _ in 0..composite_map_height {
grouped_pixels_per_y.push(Vec::new());
}
grouped_pixels_per_y_per_x.push(grouped_pixels_per_y);
}
ungrouped_pixel_per_y_per_x
.into_iter()
.enumerate()
.for_each(|(x, ungrouped_pixel_per_y)| {
ungrouped_pixel_per_y
.into_iter()
.enumerate()
.for_each(|(y, ungrouped_pixel)| {
// the pixel board coordinates based on the map grid coordinates 'x' and 'y'
let pixel_board_x;
let pixel_board_y;
if x < left_width {
pixel_board_x = 0;
} else if x >= map_size.x as usize - right_width {
pixel_board_x = composite_map_width - 1;
} else if left_width == 0 {
pixel_board_x = x;
} else {
pixel_board_x = x - left_width + 1;
}
if y < top_height {
pixel_board_y = 0;
} else if y >= map_size.y as usize - bottom_height {
pixel_board_y = composite_map_height - 1;
} else if top_height == 0 {
pixel_board_y = y;
} else {
pixel_board_y = y - top_height + 1
}
// add the existing pixel to the grouped pixels (changing from None to an instance if applicable)
// at this point we know that (x, y) in ungrouped pixels equates to (pixel_board_x, pixel_board_y) in grouped pixels
if let Some(ungrouped_pixel) = ungrouped_pixel {
grouped_pixels_per_y_per_x[pixel_board_x][pixel_board_y].push(
GroupedPixel {
ungrouped_pixel,
ungrouped_pixel_location: UVec2 {
x: x as u32,
y: y as u32,
},
},
);
}
});
});
// at this point all of the grouped pixels are known and so the pixel types can now be added to the pixel board
let mut pixel_board: PixelBoard<PixelType> =
PixelBoard::new(composite_map_width, composite_map_height);
grouped_pixels_per_y_per_x
.into_iter()
.enumerate()
.for_each(|(x, grouped_pixels_per_y)| {
grouped_pixels_per_y
.into_iter()
.enumerate()
.for_each(|(y, grouped_pixels)| {
if !grouped_pixels.is_empty() {
let pixel_type = PixelType { grouped_pixels };
pixel_board.set(x, y, Rc::new(RefCell::new(pixel_type)));
}
});
});
ShiftnanigansMapConstructor {
pixel_board_randomizer: PixelBoardRandomizer::new(pixel_board),
compressed_top_height: top_height,
compressed_left_width: left_width,
tile_size,
}
}
}
impl MapConstructor for ShiftnanigansMapConstructor {
fn construct_map(&self, map_manager: &mut MapManager) {
let random_pixel_board = self.pixel_board_randomizer.get_random_pixel_board();
// remove all tiles
map_manager.clear_tiles();
// remove all elements
map_manager.clear_elements();
// place all tiles and elements
for y in 0..random_pixel_board.get_height() {
for x in 0..random_pixel_board.get_width() {
if random_pixel_board.exists(x, y) {
let wrapped_pixel = random_pixel_board.get(x, y).unwrap();
let borrowed_pixel: &PixelType = &wrapped_pixel.borrow();
let top_left_position: UVec2 = borrowed_pixel
.grouped_pixels
.first()
.unwrap()
.ungrouped_pixel_location;
// calculate the x and y that the grouped pixels uncompress to
let uncompressed_y: usize = if y == 0 {
0
} else {
let top_offset: usize = if self.compressed_top_height == 0 {
0
} else {
self.compressed_top_height - 1
};
y + top_offset
};
let uncompressed_x: usize = if x == 0 {
0
} else {
let left_offset: usize = if self.compressed_left_width == 0 {
0
} else {
self.compressed_left_width - 1
};
x + left_offset
};
borrowed_pixel.grouped_pixels.iter().for_each(|gp| {
gp.ungrouped_pixel
.layer_pixel_entity_types
.iter()
.for_each(|lpet| match lpet {
LayerPixelEntityType::Tile(tile) => {
let position = UVec2 {
x: uncompressed_x as u32 + gp.ungrouped_pixel_location.x
- top_left_position.x,
y: uncompressed_y as u32 + gp.ungrouped_pixel_location.y
- top_left_position.y,
};
map_manager.set_tile(
tile.layer_index,
position,
&Some(tile.tilemap_tile_index),
tile.tile_collision_kind,
);
}
LayerPixelEntityType::Element(element) => {
let position = Vec2 {
x: (uncompressed_x as f32
+ gp.ungrouped_pixel_location.x as f32
- top_left_position.x as f32
+ element.position.x)
* self.tile_size.x,
y: (uncompressed_y as f32
+ gp.ungrouped_pixel_location.y as f32
- top_left_position.y as f32
+ element.position.y)
* self.tile_size.y,
};
map_manager.create_element(
&element.element_meta_handle,
&position,
element.layer_index,
);
}
});
});
}
}
}
}
}
/// The tile as it exists in the map
struct Tile {
layer_index: u32,
tilemap_tile_index: u32,
tile_collision_kind: TileCollisionKind,
}
/// An element at a location within the map
struct Element {
layer_index: u32,
element_meta_handle: Handle<ElementMeta>,
position: Vec2,
}
/// The entity as it exists in the map
enum LayerPixelEntityType {
Tile(Tile),
Element(Element),
}
/// This contains the layer pixels
struct UngroupedPixel {
layer_pixel_entity_types: Vec<LayerPixelEntityType>,
}
impl UngroupedPixel {
fn from_layers_and_location(
tile_layers: &[LocatedTileLayer],
element_layers: &[ElementLayer],
x: u32,
y: u32,
) -> Option<Self> {
// iterate over each layer at the provided location, creating a vector of MapEntityType
let mut entity_types: Vec<LayerPixelEntityType> = Vec::new();
tile_layers.iter().for_each(|tile_layer| {
tile_layer.located_tiles.iter().for_each(|tile| {
if tile.0.x == x && tile.0.y == y {
entity_types.push(LayerPixelEntityType::Tile(Tile {
layer_index: tile_layer.layer_index,
tilemap_tile_index: tile.1,
tile_collision_kind: tile.2,
}));
}
});
});
element_layers.iter().for_each(|element_layer| {
element_layer.located_elements.iter().for_each(|element| {
// grab elements nearby this location
if element.0.x as u32 == x && element.0.y as u32 == y {
// TODO determine which element this is in 'element' for custom spacing requirements
entity_types.push(LayerPixelEntityType::Element(Element {
layer_index: element_layer.layer_index,
element_meta_handle: element.1,
position: Vec2::new(element.0.x - x as f32, element.0.y - y as f32),
}));
}
});
});
if entity_types.is_empty() {
None
} else {
Some(UngroupedPixel {
layer_pixel_entity_types: entity_types,
})
}
}
}
/// This can contain one or more ungrouped pixels, allowing for combining adjacent pixels into one grouped pixel
/// This is useful for when thick walls need to be considered as one-pixel-wide walls
struct GroupedPixel {
ungrouped_pixel: UngroupedPixel,
ungrouped_pixel_location: UVec2,
}
/// The pixel provided to the pixel board randomizer
struct PixelType {
grouped_pixels: Vec<GroupedPixel>,
}
impl Pixel for PixelType {
fn get_invalid_location_offsets_for_other_pixel(&self, _: &Self) -> Vec<(i16, i16)> {
let invalid_location_offsets: Vec<(i16, i16)> = Vec::new();
// TODO add invalid location offsets as needed
self.grouped_pixels.iter().for_each(|gp| {
gp.ungrouped_pixel
.layer_pixel_entity_types
.iter()
.for_each(|lpet| {
match lpet {
LayerPixelEntityType::Tile(_) => {
// there are no restrictions on where the other pixel can exist
}
LayerPixelEntityType::Element(_) => {
// there may be restrictions in the future (as needed)
}
}
});
});
invalid_location_offsets
}
}