Struct jumpy::prelude::egui::Memory

pub struct Memory {
    pub options: Options,
    pub data: IdTypeMap,
    pub caches: CacheStorage,
    pub(crate) new_pixels_per_point: Option<f32>,
    pub(crate) new_font_definitions: Option<FontDefinitions>,
    pub(crate) interaction: Interaction,
    pub(crate) window_interaction: Option<WindowInteraction>,
    pub(crate) drag_value: MonoState,
    pub(crate) areas: Areas,
    popup: Option<Id>,
    everything_is_visible: bool,
}
Expand description

The data that egui persists between frames.

This includes window positions and sizes, how far the user has scrolled in a ScrollArea etc.

If you want this to persist when closing your app you should serialize Memory and store it. For this you need to enable the persistence.

If you want to store data for your widgets, you should look at Memory::data

Fields§

§options: Options

Global egui options.

§data: IdTypeMap

This map stores some superficial state for all widgets with custom Ids.

This includes storing if a crate::CollapsingHeader is open, how far scrolled a crate::ScrollArea is, where the cursor in a crate::TextEdit is, etc.

This is NOT meant to store any important data. Store that in your own structures!

Each read clones the data, so keep your values cheap to clone. If you want to store a lot of data you should wrap it in Arc<Mutex<…>> so it is cheap to clone.

This will be saved between different program runs if you use the persistence feature.

To store a state common for all your widgets (a singleton), use Id::null as the key.

§caches: CacheStorage

Can be used to cache computations from one frame to another.

This is for saving CPU when you have something that may take 1-100ms to compute. Things that are very slow (>100ms) should instead be done async (i.e. in another thread) so as not to lock the UI thread.

use egui::util::cache::{ComputerMut, FrameCache};

#[derive(Default)]
struct CharCounter {}
impl ComputerMut<&str, usize> for CharCounter {
    fn compute(&mut self, s: &str) -> usize {
        s.chars().count() // you probably want to cache something more expensive than this
    }
}
type CharCountCache<'a> = FrameCache<usize, CharCounter>;

ctx.memory_mut(|mem| {
    let cache = mem.caches.cache::<CharCountCache<'_>>();
    assert_eq!(cache.get("hello"), 5);
});
§new_pixels_per_point: Option<f32>§new_font_definitions: Option<FontDefinitions>§interaction: Interaction§window_interaction: Option<WindowInteraction>§drag_value: MonoState§areas: Areas§popup: Option<Id>§everything_is_visible: bool

Implementations§

§

impl Memory

pub fn layer_id_at( &self, pos: Pos2, resize_interact_radius_side: f32, ) -> Option<LayerId>

Top-most layer at the given position.

pub fn layer_ids(&self) -> impl ExactSizeIterator

An iterator over all layers. Back-to-front. Top is last.

pub fn has_focus(&self, id: Id) -> bool

Does this widget have keyboard focus?

This function does not consider whether the UI as a whole (e.g. window) has the keyboard focus. That makes this function suitable for deciding widget state that should not be disrupted if the user moves away from the window and back.

pub fn focus(&self) -> Option<Id>

Which widget has keyboard focus?

pub fn set_focus_lock_filter(&mut self, id: Id, event_filter: EventFilter)

Set an event filter for a widget.

This allows you to control whether the widget will loose focus when the user presses tab, arrow keys, or escape.

You must first give focus to the widget before calling this.

pub fn lock_focus(&mut self, id: Id, lock_focus: bool)

👎Deprecated: Use set_focus_lock_filter instead

Set an event filter for a widget.

You must first give focus to the widget before calling this.

pub fn request_focus(&mut self, id: Id)

Give keyboard focus to a specific widget. See also crate::Response::request_focus.

pub fn surrender_focus(&mut self, id: Id)

Surrender keyboard focus for a specific widget. See also crate::Response::surrender_focus.

pub fn interested_in_focus(&mut self, id: Id)

Register this widget as being interested in getting keyboard focus. This will allow the user to select it with tab and shift-tab. This is normally done automatically when handling interactions, but it is sometimes useful to pre-register interest in focus, e.g. before deciding which type of underlying widget to use, as in the crate::DragValue widget, so a widget can be focused and rendered correctly in a single frame.

pub fn stop_text_input(&mut self)

Stop editing of active TextEdit (if any).

pub fn is_anything_being_dragged(&self) -> bool

Is any widget being dragged?

pub fn is_being_dragged(&self, id: Id) -> bool

Is this specific widget being dragged?

pub fn set_dragged_id(&mut self, id: Id)

Set which widget is being dragged.

pub fn stop_dragging(&mut self)

Stop dragging any widget.

pub fn reset_areas(&mut self)

Forget window positions, sizes etc. Can be used to auto-layout windows.

pub fn area_rect(&self, id: impl Into<Id>) -> Option<Rect>

Obtain the previous rectangle of an area.

§

impl Memory

§Popups

Popups are things like combo-boxes, color pickers, menus etc. Only one can be be open at a time.

pub fn is_popup_open(&self, popup_id: Id) -> bool

Is the given popup open?

pub fn any_popup_open(&self) -> bool

Is any popup open?

pub fn open_popup(&mut self, popup_id: Id)

Open the given popup, and close all other.

pub fn close_popup(&mut self)

Close the open popup, if any.

pub fn toggle_popup(&mut self, popup_id: Id)

Toggle the given popup between closed and open.

Note: at most one popup can be open at one time.

pub fn everything_is_visible(&self) -> bool

If true, all windows, menus, tooltips etc are to be visible at once.

This is useful for testing, benchmarking, pre-caching, etc.

Experimental feature!

pub fn set_everything_is_visible(&mut self, value: bool)

If true, all windows, menus, tooltips etc are to be visible at once.

This is useful for testing, benchmarking, pre-caching, etc.

Experimental feature!

Trait Implementations§

§

impl Clone for Memory

§

fn clone(&self) -> Memory

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
§

impl Debug for Memory

§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
§

impl Default for Memory

§

fn default() -> Memory

Returns the “default value” for a type. Read more

Auto Trait Implementations§

§

impl Freeze for Memory

§

impl !RefUnwindSafe for Memory

§

impl Send for Memory

§

impl Sync for Memory

§

impl Unpin for Memory

§

impl !UnwindSafe for Memory

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
§

impl<T, U> AsBindGroupShaderType<U> for T
where U: ShaderType, &'a T: for<'a> Into<U>,

§

fn as_bind_group_shader_type(&self, _images: &RenderAssets<Image>) -> U

Return the T [ShaderType] for self. When used in [AsBindGroup] derives, it is safe to assume that all images in self exist.
§

impl<'a, T, E> AsTaggedExplicit<'a, E> for T
where T: 'a,

§

fn explicit(self, class: Class, tag: u32) -> TaggedParser<'a, Explicit, Self, E>

§

impl<'a, T, E> AsTaggedImplicit<'a, E> for T
where T: 'a,

§

fn implicit( self, class: Class, constructed: bool, tag: u32, ) -> TaggedParser<'a, Implicit, Self, E>

source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> CloneToUninit for T
where T: Clone,

source§

default unsafe fn clone_to_uninit(&self, dst: *mut T)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
§

impl<T> Conv for T

§

fn conv<T>(self) -> T
where Self: Into<T>,

Converts self into T using Into<T>. Read more
§

impl<T> Downcast<T> for T

§

fn downcast(&self) -> &T

§

impl<T> Downcast for T
where T: Any,

§

fn into_any(self: Box<T>) -> Box<dyn Any>

Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.
§

fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>

Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
§

fn as_any(&self) -> &(dyn Any + 'static)

Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
§

impl<T> DowncastSync for T
where T: Any + Send + Sync,

§

fn into_any_arc(self: Arc<T>) -> Arc<dyn Any + Send + Sync>

Convert Arc<Trait> (where Trait: Downcast) to Arc<Any>. Arc<Any> can then be further downcast into Arc<ConcreteType> where ConcreteType implements Trait.
source§

impl<T> DynClone for T
where T: Clone,

§

impl<T> FmtForward for T

§

fn fmt_binary(self) -> FmtBinary<Self>
where Self: Binary,

Causes self to use its Binary implementation when Debug-formatted.
§

fn fmt_display(self) -> FmtDisplay<Self>
where Self: Display,

Causes self to use its Display implementation when Debug-formatted.
§

fn fmt_lower_exp(self) -> FmtLowerExp<Self>
where Self: LowerExp,

Causes self to use its LowerExp implementation when Debug-formatted.
§

fn fmt_lower_hex(self) -> FmtLowerHex<Self>
where Self: LowerHex,

Causes self to use its LowerHex implementation when Debug-formatted.
§

fn fmt_octal(self) -> FmtOctal<Self>
where Self: Octal,

Causes self to use its Octal implementation when Debug-formatted.
§

fn fmt_pointer(self) -> FmtPointer<Self>
where Self: Pointer,

Causes self to use its Pointer implementation when Debug-formatted.
§

fn fmt_upper_exp(self) -> FmtUpperExp<Self>
where Self: UpperExp,

Causes self to use its UpperExp implementation when Debug-formatted.
§

fn fmt_upper_hex(self) -> FmtUpperHex<Self>
where Self: UpperHex,

Causes self to use its UpperHex implementation when Debug-formatted.
§

fn fmt_list(self) -> FmtList<Self>
where &'a Self: for<'a> IntoIterator,

Formats each item in a sequence. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<S> FromSample<S> for S

§

fn from_sample_(s: S) -> S

§

impl<T> FromWorld for T
where T: Default,

§

fn from_world(_world: &mut World) -> T

Creates Self using data from the given [World]
§

impl<T> FromWorld for T
where T: Default,

§

fn from_world(_world: &World) -> T

Creates Self using data from the given World.
§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided [Span], returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> IntoEither for T

source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
§

impl<F, T> IntoSample<T> for F
where T: FromSample<F>,

§

fn into_sample(self) -> T

§

impl<T> Pipe for T
where T: ?Sized,

§

fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> R
where Self: Sized,

Pipes by value. This is generally the method you want to use. Read more
§

fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> R
where R: 'a,

Borrows self and passes that borrow into the pipe function. Read more
§

fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> R
where R: 'a,

Mutably borrows self and passes that borrow into the pipe function. Read more
§

fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
where Self: Borrow<B>, B: 'a + ?Sized, R: 'a,

Borrows self, then passes self.borrow() into the pipe function. Read more
§

fn pipe_borrow_mut<'a, B, R>( &'a mut self, func: impl FnOnce(&'a mut B) -> R, ) -> R
where Self: BorrowMut<B>, B: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.borrow_mut() into the pipe function. Read more
§

fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
where Self: AsRef<U>, U: 'a + ?Sized, R: 'a,

Borrows self, then passes self.as_ref() into the pipe function.
§

fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
where Self: AsMut<U>, U: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.as_mut() into the pipe function.
§

fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
where Self: Deref<Target = T>, T: 'a + ?Sized, R: 'a,

Borrows self, then passes self.deref() into the pipe function.
§

fn pipe_deref_mut<'a, T, R>( &'a mut self, func: impl FnOnce(&'a mut T) -> R, ) -> R
where Self: DerefMut<Target = T> + Deref, T: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.deref_mut() into the pipe function.
§

impl<T> Pointable for T

§

const ALIGN: usize = _

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
§

impl<T> RawClone for T
where T: Clone,

§

unsafe fn raw_clone(src: *const c_void, dst: *mut c_void)

Write the default value of the type to the pointer. Read more
§

fn raw_clone_cb() -> Unsafe<&'static (dyn Fn(*const c_void, *mut c_void) + Send + Sync)>

Get a callback suitable for [SchemaData].
§

impl<T> RawDefault for T
where T: Default,

§

unsafe fn raw_default(dst: *mut c_void)

Write the default value of the type to the pointer. Read more
§

fn raw_default_cb() -> Unsafe<&'static (dyn Fn(*mut c_void) + Send + Sync)>

Get a callback suitable for [SchemaData].
§

impl<T> RawDrop for T

§

unsafe fn raw_drop(ptr: *mut c_void)

Write the default value of the type to the pointer. Read more
§

fn raw_drop_cb() -> Unsafe<&'static (dyn Fn(*mut c_void) + Send + Sync)>

Get a callback suitable for [SchemaData].
source§

impl<T> Same for T

§

type Output = T

Should always be Self
§

impl<'gc, T> Singleton<'gc> for T
where T: Default,

§

fn create(_: Context<'gc>) -> T

§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
§

impl<T> Tap for T

§

fn tap(self, func: impl FnOnce(&Self)) -> Self

Immutable access to a value. Read more
§

fn tap_mut(self, func: impl FnOnce(&mut Self)) -> Self

Mutable access to a value. Read more
§

fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Immutable access to the Borrow<B> of a value. Read more
§

fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Mutable access to the BorrowMut<B> of a value. Read more
§

fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Immutable access to the AsRef<R> view of a value. Read more
§

fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Mutable access to the AsMut<R> view of a value. Read more
§

fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Immutable access to the Deref::Target of a value. Read more
§

fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Mutable access to the Deref::Target of a value. Read more
§

fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self

Calls .tap() only in debug builds, and is erased in release builds.
§

fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self

Calls .tap_mut() only in debug builds, and is erased in release builds.
§

fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Calls .tap_borrow() only in debug builds, and is erased in release builds.
§

fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Calls .tap_borrow_mut() only in debug builds, and is erased in release builds.
§

fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Calls .tap_ref() only in debug builds, and is erased in release builds.
§

fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Calls .tap_ref_mut() only in debug builds, and is erased in release builds.
§

fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Calls .tap_deref() only in debug builds, and is erased in release builds.
§

fn tap_deref_mut_dbg<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Calls .tap_deref_mut() only in debug builds, and is erased in release builds.
source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
§

impl<T, U> ToSample<U> for T
where U: FromSample<T>,

§

fn to_sample_(self) -> U

§

impl<T> TryConv for T

§

fn try_conv<T>(self) -> Result<T, Self::Error>
where Self: TryInto<T>,

Attempts to convert self into T using TryInto<T>. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<T> TypeData for T
where T: 'static + Send + Sync + Clone,

§

fn clone_type_data(&self) -> Box<dyn TypeData>

§

impl<T> Upcast<T> for T

§

fn upcast(&self) -> Option<&T>

§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

impl<S, T> Duplex<S> for T
where T: FromSample<S> + ToSample<S>,

§

impl<T> SerializableAny for T
where T: 'static + Any + Clone + for<'a> Send + Sync,