1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
use std::{
alloc::{self, handle_alloc_error, Layout, LayoutError},
ffi::c_void,
ptr::NonNull,
};
use super::layout::*;
/// A low-level memory allocation utility for creating a resizable buffer of elements of a specific
/// layout.
///
/// The allocation has a capacity measured in the number of elements with the given [`Layout`] that
/// it has room for.
///
/// Dropping a [`ResizableAlloc`] will de-allocate it's memory.
#[derive(Debug)]
pub struct ResizableAlloc {
/// The pointer to the allocation. May be dangling for a capacity of zero or for a zero-sized
/// layout.
ptr: NonNull<c_void>,
/// The layout of the items stored
layout: Layout,
/// The current capacity measured in items.
cap: usize,
}
impl Clone for ResizableAlloc {
fn clone(&self) -> Self {
// Create a new resizable allocation
let mut copy = ResizableAlloc::new(self.layout);
// Make sure it has the same capacity as this one
copy.resize(self.cap).unwrap();
// If this is a sized type
if self.layout.size() > 0 {
// Copy the data from this allocation into the copy.
unsafe {
// SOUND: we have just allocated the copy so we know it's pointer doesn't overlap with
// our own.
copy.ptr
.as_ptr()
.copy_from_nonoverlapping(self.ptr.as_ptr(), self.capacity());
}
}
// Return the copy
copy
}
}
impl ResizableAlloc {
/// Create a new [`ResizableAlloc`] for the given memory layout. Does not actually allocate
/// anything yet.hing.
///
/// If the new capacity is greater, it will reallocate and extend the allocated region to be
/// able to fit `new_capacity` items of the this [`ResizableAlloc`]'s layout.
///
/// If the new capacity is lower, it will reallocate and remove all items
///
/// The capacity will be 0 and the pointer will be dangling.
///
/// # Panics
///
/// Panics if the provided layout is not already padded to it's alignment.
#[inline]
pub fn new(layout: Layout) -> Self {
assert_eq!(
layout,
layout.pad_to_align(),
"Layout must be padded to it's alignment"
);
Self {
ptr: Self::dangling(&layout),
layout,
cap: 0,
}
}
/// Create a new [`ResizableAlloc`] with the given capacity.
#[inline]
pub fn with_capacity(layout: Layout, capacity: usize) -> Result<Self, LayoutError> {
let mut a = Self::new(layout);
a.resize(capacity)?;
Ok(a)
}
/// Resize the buffer, re-allocating it's memory.
pub fn resize(&mut self, new_capacity: usize) -> Result<(), LayoutError> {
// Don't do anything for an equal new_capacity
if self.cap == new_capacity {
return Ok(());
}
// For ZSTs, simply update the capacity, the pointer will still be dangling.
if self.layout.size() == 0 {
self.cap = new_capacity;
return Ok(());
}
// Record the old capacity.
let old_capacity = self.cap;
// Update our capacity to the new capacity.
self.cap = new_capacity;
// If we are clearing our allocation
if new_capacity == 0 {
// If we have existing memory to de-allocate
if old_capacity > 0 {
// Calculate the layout of our old allocation
let old_alloc_layout = self.layout.repeat(old_capacity)?.0;
// Deallocate the old memory
unsafe { alloc::dealloc(self.ptr.as_ptr() as *mut u8, old_alloc_layout) }
}
// Update our pointer to be dangling.
self.ptr = Self::dangling(&self.layout);
// If we are allocating/reallocating
} else {
// If we have exsting memory to re-allocate
if old_capacity > 0 {
let old_alloc_layout = self.layout.repeat(old_capacity).unwrap().0;
let new_alloc_layout = self.layout.repeat(new_capacity).unwrap().0;
self.ptr = NonNull::new(unsafe {
alloc::realloc(
self.ptr.as_ptr() as *mut u8,
old_alloc_layout,
new_alloc_layout.size(),
) as *mut c_void
})
.unwrap_or_else(|| handle_alloc_error(new_alloc_layout));
// If we need to allocate new memory
} else {
let alloc_layout = self.layout.repeat(new_capacity).unwrap().0;
self.ptr = NonNull::new(unsafe { alloc::alloc(alloc_layout) } as *mut c_void)
.unwrap_or_else(|| handle_alloc_error(alloc_layout));
}
}
Ok(())
}
/// Get the layout.
#[inline]
pub fn layout(&self) -> Layout {
self.layout
}
/// Get the capacity.
#[inline]
pub fn capacity(&self) -> usize {
self.cap
}
/// Get a raw pointer to the allocation.
pub fn as_ptr(&self) -> *mut c_void {
self.ptr.as_ptr()
}
/// Iterate over the allocation.
pub fn iter(&self) -> ResizableAllocIter<'_> {
ResizableAllocIter {
alloc: self,
idx: 0,
}
}
/// Iterate mutably over the allocation.
pub fn iter_mut(&mut self) -> ResizableAllocIterMut<'_> {
ResizableAllocIterMut {
alloc: self,
idx: 0,
}
}
/// Get a pointer to the item with the given index without performing any bounds checks.
/// # Safety
/// This does no checks that the index is within bounds or that the returne dpointer is unaliased.
#[inline]
pub unsafe fn unchecked_idx(&self, idx: usize) -> *mut c_void {
self.ptr.as_ptr().add(self.layout.size() * idx)
}
/// Helper to create a dangling pointer that is properly aligned for our layout.
#[inline]
fn dangling(layout: &Layout) -> NonNull<c_void> {
// SOUND: the layout ensures a non-zero alignment.
unsafe { NonNull::new_unchecked(sptr::invalid_mut(layout.align())) }
}
}
impl Drop for ResizableAlloc {
fn drop(&mut self) {
if self.cap > 0 && self.layout.size() > 0 {
unsafe {
alloc::dealloc(
self.ptr.as_ptr() as *mut u8,
self.layout.repeat(self.cap).unwrap().0,
)
}
}
}
}
/// Iterator over items in a [`ResizableAlloc`].
pub struct ResizableAllocIter<'a> {
alloc: &'a ResizableAlloc,
idx: usize,
}
impl<'a> Iterator for ResizableAllocIter<'a> {
type Item = *const c_void;
fn next(&mut self) -> Option<Self::Item> {
if self.idx < self.alloc.cap {
// SOUND: we've checked that it is within bounds.
let r = unsafe { self.alloc.unchecked_idx(self.idx) };
self.idx += 1;
Some(r)
} else {
None
}
}
}
/// Mutable iterator over items in a [`ResizableAlloc`].
pub struct ResizableAllocIterMut<'a> {
alloc: &'a mut ResizableAlloc,
idx: usize,
}
impl<'a> Iterator for ResizableAllocIterMut<'a> {
type Item = *mut c_void;
fn next(&mut self) -> Option<Self::Item> {
if self.idx < self.alloc.cap {
// SOUND: we've checked that it is within bounds, and we know that the pointer will be
// valid for the new lifetime.
let r = unsafe { self.alloc.unchecked_idx(self.idx) };
self.idx += 1;
Some(r)
} else {
None
}
}
}
#[cfg(test)]
mod test {
use std::alloc::Layout;
use crate::alloc::ResizableAlloc;
#[test]
#[cfg(feature = "glam")]
fn realloc_transform() {
use crate as bones_schema;
use bones_schema_macros::HasSchema;
use glam::*;
#[derive(HasSchema, Clone, Default)]
#[repr(C)]
pub struct Transform {
pub translation: Vec3,
pub rotation: Quat,
pub scale: Vec3,
}
let layout = Layout::new::<Transform>();
let mut a = ResizableAlloc::new(layout);
a.resize(1).unwrap();
a.resize(2).unwrap();
a.resize(6).unwrap();
}
#[test]
fn resizable_allocation() {
// Create the layout of the type we want to store.
type Ty = (u32, u8);
let layout = Layout::new::<Ty>();
// This doesn't allocate yet
let mut a = ResizableAlloc::new(layout);
// We can now use resize() to allocate memory for 3 elements.
a.resize(3).unwrap();
// We write some data.
for i in 0..3 {
unsafe {
a.as_ptr().cast::<Ty>().add(i).write((i as _, i as _));
}
}
unsafe {
assert_eq!((0, 0), (a.as_ptr() as *mut Ty).read());
assert_eq!((1, 1), (a.as_ptr() as *mut Ty).add(1).read());
assert_eq!((2, 2), (a.as_ptr() as *mut Ty).add(2).read());
}
// We can grow the allocation by resizing
a.resize(4).unwrap();
// And write to the new data
unsafe {
a.as_ptr().cast::<Ty>().add(3).write((3, 3));
// The previous values will be there
assert_eq!((0, 0), (a.as_ptr() as *mut Ty).read());
assert_eq!((1, 1), (a.as_ptr() as *mut Ty).add(1).read());
assert_eq!((2, 2), (a.as_ptr() as *mut Ty).add(2).read());
// As well as the new one
assert_eq!((3, 3), (a.as_ptr() as *mut Ty).add(3).read());
}
// We can shrink the allocation, too, which will delete the items at the end without dropping them, keeping the
// items at the beginning.
a.resize(1).unwrap();
unsafe {
assert_eq!((0, 0), (a.as_ptr() as *mut Ty).read());
}
// And we can delete all the items by resizing to zero ( again, this doesn't drop item, just
// removes their memory ).
a.resize(0).unwrap();
// Now the pointer will be dangling, but aligned to our layout
assert_eq!(a.as_ptr() as usize, layout.align());
}
}