1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
use std::{
    alloc::{self, handle_alloc_error, Layout, LayoutError},
    ffi::c_void,
    ptr::NonNull,
};

use super::layout::*;

/// A low-level memory allocation utility for creating a resizable buffer of elements of a specific
/// layout.
///
/// The allocation has a capacity measured in the number of elements with the given [`Layout`] that
/// it has room for.
///
/// Dropping a [`ResizableAlloc`] will de-allocate it's memory.
pub struct ResizableAlloc {
    /// The pointer to the allocation. May be dangling for a capacity of zero or for a zero-sized
    /// layout.
    ptr: NonNull<c_void>,
    /// The layout of the items stored
    layout: Layout,
    /// The layout of the items stored, with it's size padded to its alignment.
    padded: Layout,
    /// The current capacity measured in items.
    cap: usize,
}

impl Clone for ResizableAlloc {
    fn clone(&self) -> Self {
        // Create a new resizable allocation
        let mut copy = ResizableAlloc::new(self.layout);
        // Make sure it has the same capacity as this one
        copy.resize(self.cap).unwrap();

        // If this is a sized type
        if self.layout.size() > 0 {
            // Copy the data from this allocation into the copy.
            unsafe {
                // SOUND: we have just allocated the copy so we know it's pointer doesn't overlap with
                // our own.
                copy.ptr
                    .as_ptr()
                    .copy_from_nonoverlapping(self.ptr.as_ptr(), self.capacity());
            }
        }

        // Return the copy
        copy
    }
}

impl ResizableAlloc {
    /// Create a new [`ResizableAlloc`] for the given memory layout. Does not actually allocate
    /// anything yet.hing.
    ///
    /// If the new capacity is greater, it will reallocate and extend the allocated region to be
    /// able to fit `new_capacity` items of the this [`ResizableAlloc`]'s layout.
    ///
    /// If the new capacity is lower, it will reallocate and remove all items
    ///
    /// The capacity will be 0 and the pointer will be dangling.
    #[inline]
    pub fn new(layout: Layout) -> Self {
        Self {
            ptr: Self::dangling(&layout),
            layout,
            padded: layout.pad_to_align(),
            cap: 0,
        }
    }

    /// Create a new [`ResizableAlloc`] with the given capacity.
    #[inline]
    pub fn with_capacity(layout: Layout, capacity: usize) -> Result<Self, LayoutError> {
        let mut a = Self::new(layout);
        a.resize(capacity)?;
        Ok(a)
    }

    /// Resize the buffer, re-allocating it's memory.
    pub fn resize(&mut self, new_capacity: usize) -> Result<(), LayoutError> {
        // Don't do anything for an equal new_capacity
        if self.cap == new_capacity {
            return Ok(());
        }

        // For ZSTs, simply update the capacity, the pointer will still be dangling.
        if self.layout.size() == 0 {
            self.cap = new_capacity;
            return Ok(());
        }

        // Record the old capacity.
        let old_capacity = self.cap;

        // Update our capacity to the new capacity.
        self.cap = new_capacity;

        // If we are clearing our allocation
        if new_capacity == 0 {
            // If we have existing memory to de-allocate
            if old_capacity > 0 {
                // Calculate the layout of our old allocation
                let old_alloc_layout = self.layout.repeat(old_capacity)?.0;

                // Deallocate the old memory
                unsafe { alloc::dealloc(self.ptr.as_ptr() as *mut u8, old_alloc_layout) }
            }

            // Update our pointer to be dangling.
            self.ptr = Self::dangling(&self.layout);

        // If we are allocating/reallocating
        } else {
            // If we have exsting memory to re-allocate
            if old_capacity > 0 {
                let old_alloc_layout = self.layout.repeat(old_capacity).unwrap().0;
                let new_alloc_layout = self.layout.repeat(new_capacity).unwrap().0;
                self.ptr = NonNull::new(unsafe {
                    alloc::realloc(
                        self.ptr.as_ptr() as *mut u8,
                        old_alloc_layout,
                        new_alloc_layout.size(),
                    ) as *mut c_void
                })
                .unwrap_or_else(|| handle_alloc_error(new_alloc_layout));

            // If we need to allocate new memory
            } else {
                let alloc_layout = self.layout.repeat(new_capacity).unwrap().0;
                self.ptr = NonNull::new(unsafe { alloc::alloc(alloc_layout) } as *mut c_void)
                    .unwrap_or_else(|| handle_alloc_error(alloc_layout));
            }
        }

        Ok(())
    }

    /// Get the layout.
    #[inline]
    pub fn layout(&self) -> Layout {
        self.layout
    }

    /// Get the capacity.
    #[inline]
    pub fn capacity(&self) -> usize {
        self.cap
    }

    /// Get a raw pointer to the allocation.
    pub fn as_ptr(&self) -> *mut c_void {
        self.ptr.as_ptr()
    }

    /// Iterate over the allocation.
    pub fn iter(&self) -> ResizableAllocIter<'_> {
        ResizableAllocIter {
            alloc: self,
            idx: 0,
        }
    }

    /// Iterate mutably over the allocation.
    pub fn iter_mut(&mut self) -> ResizableAllocIterMut<'_> {
        ResizableAllocIterMut {
            alloc: self,
            idx: 0,
        }
    }

    /// Get a pointer to the item with the given index without performing any bounds checks.
    /// # Safety
    /// This does no checks that the index is within bounds or that the returne dpointer is unaliased.
    #[inline]
    pub unsafe fn unchecked_idx(&self, idx: usize) -> *mut c_void {
        self.ptr.as_ptr().add(self.padded.size() * idx)
    }

    /// Helper to create a dangling pointer that is properly aligned for our layout.
    #[inline]
    fn dangling(layout: &Layout) -> NonNull<c_void> {
        // SOUND: the layout ensures a non-zero alignment.
        unsafe { NonNull::new_unchecked(sptr::invalid_mut(layout.align())) }
    }
}

impl Drop for ResizableAlloc {
    fn drop(&mut self) {
        if self.cap > 0 && self.layout.size() > 0 {
            unsafe {
                alloc::dealloc(
                    self.ptr.as_ptr() as *mut u8,
                    self.layout.repeat(self.cap).unwrap().0,
                )
            }
        }
    }
}

/// Iterator over items in a [`ResizableAlloc`].
pub struct ResizableAllocIter<'a> {
    alloc: &'a ResizableAlloc,
    idx: usize,
}
impl<'a> Iterator for ResizableAllocIter<'a> {
    type Item = *const c_void;

    fn next(&mut self) -> Option<Self::Item> {
        if self.idx < self.alloc.cap {
            // SOUND: we've checked that it is within bounds.
            let r = unsafe { self.alloc.unchecked_idx(self.idx) };
            self.idx += 1;
            Some(r)
        } else {
            None
        }
    }
}

/// Mutable iterator over items in a [`ResizableAlloc`].
pub struct ResizableAllocIterMut<'a> {
    alloc: &'a mut ResizableAlloc,
    idx: usize,
}
impl<'a> Iterator for ResizableAllocIterMut<'a> {
    type Item = *mut c_void;

    fn next(&mut self) -> Option<Self::Item> {
        if self.idx < self.alloc.cap {
            // SOUND: we've checked that it is within bounds, and we know that the pointer will be
            // valid for the new lifetime.
            let r = unsafe { self.alloc.unchecked_idx(self.idx) };
            self.idx += 1;
            Some(r)
        } else {
            None
        }
    }
}

#[cfg(test)]
mod test {
    use std::alloc::Layout;

    use crate::alloc::ResizableAlloc;

    #[test]
    #[cfg(feature = "glam")]
    fn realloc_transform() {
        use crate as bones_schema;
        use bones_schema_macros::HasSchema;
        use glam::*;

        #[derive(HasSchema, Clone, Default)]
        #[repr(C)]
        pub struct Transform {
            pub translation: Vec3,
            pub rotation: Quat,
            pub scale: Vec3,
        }

        let layout = Layout::new::<Transform>();

        let mut a = ResizableAlloc::new(layout);

        a.resize(1).unwrap();
        a.resize(2).unwrap();
        a.resize(6).unwrap();
    }

    #[test]
    fn resizable_allocation() {
        // Create the layout of the type we want to store.
        type Ty = (u32, u8);
        let layout = Layout::new::<Ty>();

        // This doesn't allocate yet
        let mut a = ResizableAlloc::new(layout);

        // We can now use resize() to allocate memory for 3 elements.
        a.resize(3).unwrap();

        // We write some data.
        for i in 0..3 {
            unsafe {
                a.as_ptr().cast::<Ty>().add(i).write((i as _, i as _));
            }
        }
        unsafe {
            assert_eq!((0, 0), (a.as_ptr() as *mut Ty).read());
            assert_eq!((1, 1), (a.as_ptr() as *mut Ty).add(1).read());
            assert_eq!((2, 2), (a.as_ptr() as *mut Ty).add(2).read());
        }

        // We can grow the allocation by resizing
        a.resize(4).unwrap();

        // And write to the new data
        unsafe {
            a.as_ptr().cast::<Ty>().add(3).write((3, 3));

            // The previous values will be there
            assert_eq!((0, 0), (a.as_ptr() as *mut Ty).read());
            assert_eq!((1, 1), (a.as_ptr() as *mut Ty).add(1).read());
            assert_eq!((2, 2), (a.as_ptr() as *mut Ty).add(2).read());
            // As well as the new one
            assert_eq!((3, 3), (a.as_ptr() as *mut Ty).add(3).read());
        }

        // We can shrink the allocation, too, which will delete the items at the end without dropping them, keeping the
        // items at the beginning.
        a.resize(1).unwrap();
        unsafe {
            assert_eq!((0, 0), (a.as_ptr() as *mut Ty).read());
        }

        // And we can delete all the items by resizing to zero ( again, this doesn't drop item, just
        // removes their memory ).
        a.resize(0).unwrap();

        // Now the pointer will be dangling, but aligned to our layout
        assert_eq!(a.as_ptr() as usize, layout.align());
    }
}