1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
//! Time functionality for the Bones framework.
//!
//! This is a slimmed down version of [`bevy_time`].
//!
//! [`bevy_time`] is licensed under MIT OR Apache-2.0.
//!
//! [`bevy_time`]: https://github.com/bevyengine/bevy/tree/aa4170d9a471c6f6a4f3bea4e41ed2c39de98e16/crates/bevy_time
use crate::prelude::*;
use instant::{Duration, Instant};
/// A clock that tracks how much it has advanced (and how much real time has elapsed) since
/// its previous update and since its creation.
#[derive(Clone, Copy, Debug, HasSchema)]
#[repr(C)]
pub struct Time {
#[schema(opaque)]
startup: Instant,
#[schema(opaque)]
last_update: Option<Instant>,
#[schema(opaque)]
first_update: Option<Instant>,
// pausing
paused: bool,
delta: Duration,
delta_seconds: f32,
delta_seconds_f64: f64,
elapsed: Duration,
elapsed_seconds: f32,
elapsed_seconds_f64: f64,
}
impl Default for Time {
fn default() -> Self {
Self {
paused: false,
first_update: None,
last_update: None,
delta_seconds: 0.0,
delta: Duration::ZERO,
elapsed_seconds: 0.0,
delta_seconds_f64: 0.0,
startup: Instant::now(),
elapsed: Duration::ZERO,
elapsed_seconds_f64: 0.0,
}
}
}
impl Time {
/// Constructs a new `Time` instance with a specific startup `Instant`.
pub fn new(startup: Instant) -> Self {
Self {
startup,
..Default::default()
}
}
/// Updates the internal time measurements.
///
/// Calling this method as part of your app will most likely result in inaccurate timekeeping,
/// as the `Time` resource is ordinarily managed by the bones rendering backend.
pub fn update(&mut self) {
let now = Instant::now();
self.update_with_instant(now);
}
/// Updates time with a specified [`Instant`].
///
/// This method is provided for use in tests. Calling this method as part of your app will most
/// likely result in inaccurate timekeeping, as the `Time` resource is ordinarily managed by
/// whatever bones renderer you are using.
///
/// # Examples
///
/// ```ignore
/// # use bones_input::prelude::*;
/// # use bones_ecs::prelude::*;
/// # use std::time::Duration;
/// # fn main () {
/// # test_health_system();
/// # }
/// #[derive(Resource)]
/// struct Health {
/// // Health value between 0.0 and 1.0
/// health_value: f32,
/// }
///
/// fn health_system(time: Res<Time>, mut health: ResMut<Health>) {
/// // Increase health value by 0.1 per second, independent of frame rate,
/// // but not beyond 1.0
/// health.health_value = (health.health_value + 0.1 * time.delta_seconds()).min(1.0);
/// }
///
/// // Mock time in tests
/// fn test_health_system() {
/// let mut world = World::default();
/// let mut time = Time::default();
/// time.update();
/// world.insert_resource(time);
/// world.insert_resource(Health { health_value: 0.2 });
///
/// let mut schedule = Schedule::new();
/// schedule.add_system(health_system);
///
/// // Simulate that 30 ms have passed
/// let mut time = world.resource_mut::<Time>();
/// let last_update = time.last_update().unwrap();
/// time.update_with_instant(last_update + Duration::from_millis(30));
///
/// // Run system
/// schedule.run(&mut world);
///
/// // Check that 0.003 has been added to the health value
/// let expected_health_value = 0.2 + 0.1 * 0.03;
/// let actual_health_value = world.resource::<Health>().health_value;
/// assert_eq!(expected_health_value, actual_health_value);
/// }
/// ```
pub fn update_with_instant(&mut self, instant: Instant) {
let raw_delta = instant - self.last_update.unwrap_or(self.startup);
let delta = if self.paused {
Duration::ZERO
} else {
// avoid rounding when at normal speed
raw_delta
};
if self.last_update.is_some() {
self.delta = delta;
self.delta_seconds = self.delta.as_secs_f32();
self.delta_seconds_f64 = self.delta.as_secs_f64();
} else {
self.first_update = Some(instant);
}
self.elapsed += delta;
self.elapsed_seconds = self.elapsed.as_secs_f32();
self.elapsed_seconds_f64 = self.elapsed.as_secs_f64();
self.last_update = Some(instant);
}
/// Advance the time exactly by the given duration.
///
/// This is useful when ticking the time exactly by a fixed timestep.
pub fn advance_exact(&mut self, duration: Duration) {
let next_instant = self.last_update.unwrap_or_else(Instant::now) + duration;
self.update_with_instant(next_instant);
}
/// Returns how much time has advanced since the last [`update`](#method.update), as a [`Duration`].
#[inline]
pub fn delta(&self) -> Duration {
self.delta
}
/// Returns how much time has advanced since the last [`update`](#method.update), as [`prim@f32`] seconds.
#[inline]
pub fn delta_seconds(&self) -> f32 {
self.delta_seconds
}
/// Returns how much time has advanced since the last [`update`](#method.update), as [`prim@f64`] seconds.
#[inline]
pub fn delta_seconds_f64(&self) -> f64 {
self.delta_seconds_f64
}
/// Returns how much time has advanced since [`startup`](#method.startup), as [`Duration`].
#[inline]
pub fn elapsed(&self) -> Duration {
self.elapsed
}
/// Returns how much time has advanced since [`startup`](#method.startup), as [`prim@f32`] seconds.
///
/// **Note:** This is a monotonically increasing value. It's precision will degrade over time.
/// If you need an `f32` but that precision loss is unacceptable,
/// use [`elapsed_seconds_wrapped`](#method.elapsed_seconds_wrapped).
#[inline]
pub fn elapsed_seconds(&self) -> f32 {
self.elapsed_seconds
}
/// Returns how much time has advanced since [`startup`](#method.startup), as [`prim@f64`] seconds.
#[inline]
pub fn elapsed_seconds_f64(&self) -> f64 {
self.elapsed_seconds_f64
}
/// Stops the clock, preventing it from advancing until resumed.
///
/// **Note:** This does affect the `raw_*` measurements.
#[inline]
pub fn pause(&mut self) {
self.paused = true;
}
/// Resumes the clock if paused.
#[inline]
pub fn unpause(&mut self) {
self.paused = false;
}
/// Returns `true` if the clock is currently paused.
#[inline]
pub fn is_paused(&self) -> bool {
self.paused
}
}
#[cfg(test)]
#[allow(clippy::float_cmp)]
mod tests {
use super::Time;
use std::time::{Duration, Instant};
#[test]
fn update_test() {
let start_instant = Instant::now();
let mut time = Time::new(start_instant);
// Ensure `time` was constructed correctly.
assert_eq!(time.delta(), Duration::ZERO);
assert_eq!(time.delta_seconds(), 0.0);
assert_eq!(time.delta_seconds_f64(), 0.0);
assert_eq!(time.elapsed(), Duration::ZERO);
assert_eq!(time.elapsed_seconds(), 0.0);
assert_eq!(time.elapsed_seconds_f64(), 0.0);
// Update `time` and check results.
// The first update to `time` normally happens before other systems have run,
// so the first delta doesn't appear until the second update.
let first_update_instant = Instant::now();
time.update_with_instant(first_update_instant);
assert_eq!(time.delta(), Duration::ZERO);
assert_eq!(time.delta_seconds(), 0.0);
assert_eq!(time.delta_seconds_f64(), 0.0);
assert_eq!(time.elapsed(), first_update_instant - start_instant,);
assert_eq!(
time.elapsed_seconds(),
(first_update_instant - start_instant).as_secs_f32(),
);
assert_eq!(
time.elapsed_seconds_f64(),
(first_update_instant - start_instant).as_secs_f64(),
);
// Update `time` again and check results.
// At this point its safe to use time.delta().
let second_update_instant = Instant::now();
time.update_with_instant(second_update_instant);
assert_eq!(time.delta(), second_update_instant - first_update_instant);
assert_eq!(
time.delta_seconds(),
(second_update_instant - first_update_instant).as_secs_f32(),
);
assert_eq!(
time.delta_seconds_f64(),
(second_update_instant - first_update_instant).as_secs_f64(),
);
assert_eq!(time.elapsed(), second_update_instant - start_instant,);
assert_eq!(
time.elapsed_seconds(),
(second_update_instant - start_instant).as_secs_f32(),
);
assert_eq!(
time.elapsed_seconds_f64(),
(second_update_instant - start_instant).as_secs_f64(),
);
}
#[test]
fn pause_test() {
let start_instant = Instant::now();
let mut time = Time::new(start_instant);
let first_update_instant = Instant::now();
time.update_with_instant(first_update_instant);
assert!(!time.is_paused());
time.pause();
assert!(time.is_paused());
let second_update_instant = Instant::now();
time.update_with_instant(second_update_instant);
assert_eq!(time.delta(), Duration::ZERO);
assert_eq!(time.elapsed(), first_update_instant - start_instant);
time.unpause();
assert!(!time.is_paused());
let third_update_instant = Instant::now();
time.update_with_instant(third_update_instant);
assert_eq!(time.delta(), third_update_instant - second_update_instant);
assert_eq!(
time.elapsed(),
(third_update_instant - second_update_instant) + (first_update_instant - start_instant),
);
}
}