1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
//! Camera components.
use std::collections::VecDeque;
use crate::prelude::*;
/// Makes an entity behave like a camera.
///
/// The entity must also have a [`Transform`] component for the camera to render anything.
#[derive(Clone, Debug, HasSchema)]
// TODO: make repr(C) when `Option`s are supported.
// We don't have `Option` support in `bones_schema` right now.
// Once we do, we can make this type `#[repr(C)]` instead of `#[schema(opaque)]`.
#[repr(C)]
pub struct Camera {
/// The height of the camera in in-game pixels.
///
/// The width of the camera will be determined from the window aspect ratio.
// TODO: implement different scaling modes for bones cameras.
pub size: CameraSize,
/// Whether or not the camera is enabled and rendering.
pub active: bool,
/// An optional viewport override, allowing you to specify that the camera should render to only
/// a portion of the window.
///
/// This can be used, for example, for split screen functionality.
pub viewport: Maybe<Viewport>,
/// Cameras with a higher priority will be rendered on top of cameras with a lower priority.
pub priority: i32,
}
/// A size setting for a camera.
#[derive(HasSchema, Debug, Clone, Copy)]
#[repr(C, u8)]
pub enum CameraSize {
/// The camera will be a fixed height with a width dependent on the aspect ratio.
FixedHeight(f32),
/// The camera will be a fixed width with a height dependent on the aspect ratio.
FixedWidth(f32),
}
impl Default for CameraSize {
fn default() -> Self {
Self::FixedHeight(400.)
}
}
/// A custom viewport specification for a [`Camera`].
#[derive(Clone, Copy, Debug, HasSchema, Default)]
#[repr(C)]
pub struct Viewport {
/// The physical position to render this viewport to within the RenderTarget of this Camera.
/// (0,0) corresponds to the top-left corner.
pub position: UVec2,
/// The physical size of the viewport rectangle to render to within the RenderTarget of this
/// Camera. The origin of the rectangle is in the top-left corner.
pub size: UVec2,
/// The minimum depth to render (on a scale from 0.0 to 1.0).
pub depth_min: f32,
/// The maximum depth to render (on a scale from 0.0 to 1.0).
pub depth_max: f32,
}
impl Default for Camera {
fn default() -> Self {
Self {
active: true,
viewport: Unset,
priority: 0,
size: default(),
}
}
}
/// Resource for controlling the clear color.
#[derive(Deref, DerefMut, Clone, Copy, HasSchema, Default)]
pub struct ClearColor(pub Color);
/// Utility function that spawns the camera in a default position.
///
/// Camera will be spawned such that it is positioned at `0` on X and Y axis and at `1000` on the Z
/// axis, allowing it to see sprites with a Z position from `0` to `1000` non-inclusive.
pub fn spawn_default_camera(
entities: &mut Entities,
transforms: &mut CompMut<Transform>,
cameras: &mut CompMut<Camera>,
) -> Entity {
let ent = entities.create();
cameras.insert(ent, default());
transforms.insert(ent, Transform::from_translation(Vec3::new(0., 0., 1000.)));
ent
}
/// Install the camera utilities on the given [`SystemStages`].
pub fn plugin(session: &mut Session) {
session
.stages
.add_system_to_stage(CoreStage::Last, apply_shake)
.add_system_to_stage(CoreStage::Last, apply_trauma)
.add_system_to_stage(CoreStage::Last, decay_trauma);
}
/// Resource providing a noise source for [`CameraShake`] entities to use.
#[derive(Clone, HasSchema)]
pub struct ShakeNoise(pub noise::permutationtable::PermutationTable);
impl Default for ShakeNoise {
fn default() -> Self {
Self(noise::permutationtable::PermutationTable::new(0))
}
}
/// Component for an entity with camera shake.
#[derive(Clone, HasSchema, Debug, Copy)]
#[repr(C)]
pub struct CameraShake {
/// Value from 0-1 that indicates the intensity of the shake. Should usually be set with
/// `CameraShake::add_trauma` and not manually decayed.
pub trauma: f32,
/// The maximum offset angle in radians that the camera shake can cause.
pub max_angle_rad: f32,
/// The maximum offset position that the camera shake can cause.
pub max_offset: Vec2,
/// The the length of time in seconds for the camera trauma to decay from 1 to 0.
pub decay_rate: f32,
/// The speed that the screen is shook.
pub speed: f32,
/// The camera will always restore to this position.
pub center: Vec3,
}
impl Default for CameraShake {
fn default() -> Self {
Self {
trauma: 0.0,
max_angle_rad: 90.0,
max_offset: Vec2::splat(100.0),
decay_rate: 0.5,
speed: 1.5,
center: Vec3::ZERO,
}
}
}
impl CameraShake {
/// Create a new [`CameraShake`] component with the provided maximum offset angle (in degrees)
/// and position as well as the trauma decay rate in seconds.
pub fn new(max_angle_deg: f32, max_offset: Vec2, speed: f32, decay_rate: f32) -> Self {
Self {
max_angle_rad: max_angle_deg.to_radians(),
max_offset,
decay_rate,
speed,
..default()
}
}
/// Create a new [`CameraShake`] component with the provided maximum offset angle (in degrees)
/// and position and its initial trauma set to some value (clamped between 0 and 1).
pub fn with_trauma(
trauma: f32,
max_angle_deg: f32,
max_offset: Vec2,
speed: f32,
decay_rate: f32,
) -> Self {
let mut shake = Self::new(max_angle_deg, max_offset, speed, decay_rate);
shake.trauma = trauma.clamp(0.0, 1.0);
shake
}
/// Adds trauma to the camera, capping it at 1.0
pub fn add_trauma(&mut self, value: f32) {
self.trauma += value;
if 1.0 < self.trauma {
self.trauma = 1.0;
}
}
}
/// Queue that can be used to send camera trauma events.
#[derive(Default, Clone, HasSchema)]
pub struct CameraTraumaEvents {
/// The event queue.
pub queue: VecDeque<f32>,
}
impl CameraTraumaEvents {
/// Send a camera trauma event.
pub fn send(&mut self, trauma: f32) {
self.queue.push_back(trauma);
}
}
fn apply_trauma(
entities: Res<Entities>,
mut camera_shakes: CompMut<CameraShake>,
mut trauma_events: ResMutInit<CameraTraumaEvents>,
) {
for (_ent, camera_shake) in entities.iter_with(&mut camera_shakes) {
camera_shake.add_trauma(
trauma_events
.queue
.iter()
.fold(0.0, |acc, trauma| acc + trauma),
);
}
trauma_events.queue.clear();
}
fn decay_trauma(entities: Res<Entities>, mut camera_shakes: CompMut<CameraShake>, time: Res<Time>) {
for (_ent, shake) in entities.iter_with(&mut camera_shakes) {
shake.trauma = 0.0f32.max(shake.trauma - shake.decay_rate * time.delta_seconds())
}
}
fn apply_shake(
entities: Res<Entities>,
mut transforms: CompMut<Transform>,
camera_shakes: Comp<CameraShake>,
time: Res<Time>,
noise: ResInit<ShakeNoise>,
) {
macro_rules! offset_noise {
($offset:expr, $shake_speed:expr) => {
perlin_noise::perlin_1d(
((time.elapsed_seconds() + $offset) * $shake_speed * 0.001).into(),
&noise.0,
) as f32
};
}
for (_ent, (shake, transform)) in entities.iter_with((&camera_shakes, &mut transforms)) {
(transform.rotation, transform.translation) = if shake.trauma > 0.0 {
let sqr_trauma = shake.trauma * shake.trauma;
let rotation = Quat::from_axis_angle(
Vec3::Z,
sqr_trauma * offset_noise!(0.0, shake.speed) * shake.max_angle_rad,
);
let x_offset = sqr_trauma * offset_noise!(1.0, shake.speed) * shake.max_offset.x;
let y_offset = sqr_trauma * offset_noise!(2.0, shake.speed) * shake.max_offset.y;
(rotation, shake.center + Vec3::new(x_offset, y_offset, 0.0))
} else {
// In future we may need to provide a rotation field on `CameraShake` should we need to
// rotate the camera in another context.
(Quat::IDENTITY, shake.center)
}
}
}
/// This module is copied from code from this commit:
/// <https://github.com/Razaekel/noise-rs/commit/1a2b5e0880656e8d2ae1025df576d70180d7592a>.
///
/// We temporarily vendor the code here because the 1D perlin noise hasn't been released yet:
/// <https://github.com/Razaekel/noise-rs/issues/306>
///
/// From the repo:
///
/// > Licensed under either of
/// >
/// > Apache License, Version 2.0 (LICENSE-APACHE or <http://www.apache.org/licenses/LICENSE-2.0>)
/// > MIT license (LICENSE-MIT or <http://opensource.org/licenses/MIT>)
/// > at your option.
mod perlin_noise {
#[inline(always)]
pub fn perlin_1d<NH>(point: f64, hasher: &NH) -> f64
where
NH: noise::permutationtable::NoiseHasher + ?Sized,
{
// Unscaled range of linearly interpolated perlin noise should be (-sqrt(N)/2, sqrt(N)/2).
// Need to invert this value and multiply the unscaled result by the value to get a scaled
// range of (-1, 1).
//
// 1/(sqrt(N)/2), N=1 -> 1/2
const SCALE_FACTOR: f64 = 0.5;
#[inline(always)]
#[rustfmt::skip]
fn gradient_dot_v(perm: usize, point: f64) -> f64 {
let x = point;
match perm & 0b1 {
0 => x, // ( 1 )
1 => -x, // (-1 )
_ => unreachable!(),
}
}
let floored = point.floor();
let corner = floored as isize;
let distance = point - floored;
macro_rules! call_gradient(
($x_offset:expr) => {
{
gradient_dot_v(
hasher.hash(&[corner + $x_offset]),
distance - $x_offset as f64
)
}
}
);
let g0 = call_gradient!(0);
let g1 = call_gradient!(1);
let u = map_quintic(distance);
let unscaled_result = linear_interpolation(u, g0, g1);
let scaled_result = unscaled_result * SCALE_FACTOR;
// At this point, we should be really damn close to the (-1, 1) range, but some float errors
// could have accumulated, so let's just clamp the results to (-1, 1) to cut off any
// outliers and return it.
scaled_result.clamp(-1.0, 1.0)
}
#[inline(always)]
fn linear_interpolation(u: f64, g0: f64, g1: f64) -> f64 {
let k0 = g0;
let k1 = g1 - g0;
k0 + k1 * u
}
fn map_quintic(n: f64) -> f64 {
let x = n.clamp(0.0, 1.0);
x * x * x * (x * (x * 6.0 - 15.0) + 10.0)
}
}