1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
use crate::prelude::*;

use bones_schema::alloc::ResizableAlloc;
use std::{
    ffi::c_void,
    mem::MaybeUninit,
    ptr::{self},
    rc::Rc,
};

/// Holds components of a given type indexed by `Entity`.
///
/// We do not check if the given entity is alive here, this should be done using `Entities`.
pub struct UntypedComponentStore {
    pub(crate) bitset: BitSetVec,
    pub(crate) storage: ResizableAlloc,
    pub(crate) max_id: usize,
    pub(crate) schema: &'static Schema,
}

unsafe impl Sync for UntypedComponentStore {}
unsafe impl Send for UntypedComponentStore {}

impl Clone for UntypedComponentStore {
    fn clone(&self) -> Self {
        let new_storage = self.storage.clone();

        for i in 0..self.max_id {
            if self.bitset.bit_test(i) {
                // SAFE: constructing an UntypedComponent store is unsafe, and the user affirms that
                // clone_fn will not do anything unsound.
                //
                // - And our previous pointer is a valid pointer to component data
                // - And our new pointer is a writable pointer with the same layout
                unsafe {
                    let prev_ptr = self.storage.unchecked_idx(i);
                    let new_ptr = new_storage.unchecked_idx(i);
                    (self
                        .schema
                        .clone_fn
                        .as_ref()
                        .expect("Cannot clone component")
                        .get())(prev_ptr, new_ptr);
                }
            }
        }

        Self {
            bitset: self.bitset.clone(),
            storage: new_storage,
            max_id: self.max_id,
            schema: self.schema,
        }
    }
}

impl Drop for UntypedComponentStore {
    fn drop(&mut self) {
        if let Some(drop_fn) = &self.schema.drop_fn {
            for i in 0..self.storage.capacity() {
                if self.bitset.bit_test(i) {
                    // SAFE: constructing an UntypedComponent store is unsafe, and the user affirms
                    // that drop_fn will not do anything unsound.
                    //
                    // And our pointer is valid.
                    unsafe {
                        let ptr = self.storage.unchecked_idx(i);
                        drop_fn.get()(ptr);
                    }
                }
            }
        }
    }
}

impl UntypedComponentStore {
    /// Create a arbitrary [`UntypedComponentStore`].
    ///
    /// In Rust, you will usually not use [`UntypedComponentStore`] and will use the statically
    /// typed [`ComponentStore<T>`] instead.
    pub fn new(schema: &'static Schema) -> Self {
        Self {
            bitset: create_bitset(),
            storage: ResizableAlloc::new(schema.layout()),
            max_id: 0,
            schema,
        }
    }

    /// Create an [`UntypedComponentStore`] that is valid for the given type `T`.
    pub fn for_type<T: HasSchema>() -> Self {
        Self {
            bitset: create_bitset(),
            storage: ResizableAlloc::new(T::schema().layout()),
            max_id: 0,
            schema: T::schema(),
        }
    }

    /// Get the schema of the components stored.
    pub fn schema(&self) -> &'static Schema {
        self.schema
    }

    /// Insert component data for the given entity and get the previous component data if present.
    /// # Panics
    /// Panics if the schema of `T` doesn't match the store.
    #[inline]
    #[track_caller]
    pub fn insert_box(&mut self, entity: Entity, data: SchemaBox) -> Option<SchemaBox> {
        self.try_insert_box(entity, data).unwrap()
    }

    /// Insert component data for the given entity and get the previous component data if present.
    /// # Errors
    /// Errors if the schema of `T` doesn't match the store.
    pub fn try_insert_box(
        &mut self,
        entity: Entity,
        data: SchemaBox,
    ) -> Result<Option<SchemaBox>, SchemaMismatchError> {
        if self.schema != data.schema() {
            Err(SchemaMismatchError)
        } else {
            let ptr = data.as_ptr();
            // SOUND: we validated schema matches
            let already_had_component = unsafe { self.insert_raw(entity, ptr) };
            if already_had_component {
                // Previous component data will be written to data pointer
                Ok(Some(data))
            } else {
                // Don't run the data's destructor, it has been moved into the storage.
                std::mem::forget(data);
                Ok(None)
            }
        }
    }

    /// Insert component data for the given entity and get the previous component data if present.
    /// # Panics
    /// Panics if the schema of `T` doesn't match the store.
    #[inline]
    #[track_caller]
    pub fn insert<T: HasSchema>(&mut self, entity: Entity, data: T) -> Option<T> {
        self.try_insert(entity, data).unwrap()
    }

    /// Insert component data for the given entity and get the previous component data if present.
    /// # Errors
    /// Errors if the schema of `T` doesn't match the store.
    pub fn try_insert<T: HasSchema>(
        &mut self,
        entity: Entity,
        mut data: T,
    ) -> Result<Option<T>, SchemaMismatchError> {
        if self.schema != T::schema() {
            Err(SchemaMismatchError)
        } else {
            let ptr = &mut data as *mut T as *mut c_void;
            // SOUND: we validated schema matches
            let already_had_component = unsafe { self.insert_raw(entity, ptr) };
            if already_had_component {
                // Previous component data will be written to data pointer
                Ok(Some(data))
            } else {
                // Don't run the data's destructor, it has been moved into the storage.
                std::mem::forget(data);
                Ok(None)
            }
        }
    }

    /// Returns true if the entity already had a component of this type.
    ///
    /// If true is returned, the previous value of the pointer will be written to `data`.
    ///
    /// # Safety
    /// - The data must be a pointer to memory with the same schema.
    /// - If `false` is returned you must ensure the `data` pointer is not used after pushing.
    pub unsafe fn insert_raw(&mut self, entity: Entity, data: *mut c_void) -> bool {
        let index = entity.index() as usize;
        let size = self.schema.layout().size();

        // If the component already exists on the entity
        if self.bitset.bit_test(entity.index() as usize) {
            let ptr = self.storage.unchecked_idx(index);

            // Swap the data with the data already there
            ptr::swap_nonoverlapping(ptr, data, size);

            // There was already a component of this type
            true

        // If the component does not already exist for this entity.
        } else {
            // Update our maximum enitity id.
            self.max_id = self.max_id.max(index + 1);

            // Make sure we have enough memory allocated for storage.
            self.allocate_enough(index);

            // Set the bit indicating that this entity has this component data stored.
            self.bitset.bit_set(index);

            // Copy the data from the data pointer into our storage
            self.storage
                .unchecked_idx(index)
                .copy_from_nonoverlapping(data, size);

            // There was not already a component of this type
            false
        }
    }

    /// Ensures that we have the storage filled at least until the `until` variable.
    ///
    /// Usually, set this to `entity.index`.
    fn allocate_enough(&mut self, until: usize) {
        if self.storage.capacity() <= until {
            self.storage
                // TODO: Determine a better policy for resizing and pre-allocating component storage.
                // Right now we double the size of the storage every time we run out. It seems like we
                // might be able to come up with a smarter policy. On top of that we should
                // be able to create a type data for components ( see
                // `bones_framework::metadata_asset()` for example ) that lets you customize the resize
                // and also pre-allocation strategy for the component. Right now we don't pre-allocate
                // any memory, but that could be useful for components that know there will be a lot of
                // them, such as bullets.
                .resize((until + 1) * 2)
                .unwrap();
        }
    }

    /// Get a reference to the component storage for the given [`Entity`].
    /// # Panics
    /// Panics if the schema of `T` doesn't match.
    #[track_caller]
    #[inline]
    pub fn get<T: HasSchema>(&self, entity: Entity) -> Option<&T> {
        self.try_get(entity).unwrap()
    }

    /// Get a reference to the component storage for the given [`Entity`].
    /// # Errors
    /// Errors if the schema of `T` doesn't match.
    pub fn try_get<T: HasSchema>(&self, entity: Entity) -> Result<Option<&T>, SchemaMismatchError> {
        self.get_ref(entity).map(|x| x.try_cast()).transpose()
    }

    /// Get a [`SchemaRef`] to the component for the given [`Entity`] if the entity has this
    /// component.
    #[inline]
    pub fn get_ref(&self, entity: Entity) -> Option<SchemaRef> {
        let idx = entity.index() as usize;
        self.get_idx(idx)
    }

    fn get_idx(&self, idx: usize) -> Option<SchemaRef> {
        if self.bitset.bit_test(idx) {
            // SOUND: we ensure that there is allocated storge for entities that have their bit set.
            let ptr = unsafe { self.storage.unchecked_idx(idx) };
            // SOUND: we know that the pointer has our schema.
            Some(unsafe { SchemaRef::from_ptr_schema(ptr, self.schema) })
        } else {
            None
        }
    }

    /// Get a mutable reference to the component storage for the given [`Entity`].
    /// # Panics
    /// Panics if the schema of `T` doesn't match.
    #[track_caller]
    #[inline]
    pub fn get_mut<T: HasSchema>(&mut self, entity: Entity) -> Option<&mut T> {
        self.try_get_mut(entity).unwrap()
    }

    /// Get a mutable reference to the component storage for the given [`Entity`].
    /// # Errors
    /// Errors if the schema of `T` doesn't match.
    pub fn try_get_mut<T: HasSchema>(
        &mut self,
        entity: Entity,
    ) -> Result<Option<&mut T>, SchemaMismatchError> {
        self.get_ref_mut(entity)
            .map(|x| x.try_cast_into_mut())
            .transpose()
    }

    /// Get a mutable reference to component storage for the given [`Entity`]
    /// if it exists. Otherwise inserts `T` generated by calling parameter: `f`.
    #[inline]
    pub fn get_mut_or_insert<T: HasSchema>(
        &mut self,
        entity: Entity,
        f: impl FnOnce() -> T,
    ) -> &mut T {
        if !self.bitset.bit_test(entity.index() as usize) {
            self.insert(entity, f());
        }
        self.get_mut(entity).unwrap()
    }

    /// Get a [`SchemaRefMut`] to the component for the given [`Entity`]
    #[inline]
    pub fn get_ref_mut<'a>(&mut self, entity: Entity) -> Option<SchemaRefMut<'a>> {
        let idx = entity.index() as usize;
        self.get_idx_mut(idx)
    }

    fn get_idx_mut<'a>(&mut self, idx: usize) -> Option<SchemaRefMut<'a>> {
        if self.bitset.bit_test(idx) {
            // SOUND: we ensure that there is allocated storage for entities that have their bit
            // set.
            let ptr = unsafe { self.storage.unchecked_idx(idx) };
            // SOUND: we know that the pointer has our schema.
            Some(unsafe { SchemaRefMut::from_ptr_schema(ptr, self.schema) })
        } else {
            None
        }
    }

    /// Get mutable references s to the component data for multiple entities at the same time.
    ///
    /// # Panics
    ///
    /// This will panic if the same entity is specified multiple times. This is invalid because it
    /// would mean you would have two mutable references to the same component data at the same
    /// time.
    ///
    /// This will also panic if there is a schema mismatch.
    #[inline]
    #[track_caller]
    pub fn get_many_mut<const N: usize, T: HasSchema>(
        &mut self,
        entities: [Entity; N],
    ) -> [Option<&mut T>; N] {
        self.try_get_many_mut(entities).unwrap()
    }

    /// Get mutable references s to the component data for multiple entities at the same time.
    ///
    /// # Panics
    ///
    /// This will panic if the same entity is specified multiple times. This is invalid because it
    /// would mean you would have two mutable references to the same component data at the same
    /// time.
    ///
    /// # Errors
    ///
    /// This will error if there is a schema mismatch.
    pub fn try_get_many_mut<const N: usize, T: HasSchema>(
        &mut self,
        entities: [Entity; N],
    ) -> Result<[Option<&mut T>; N], SchemaMismatchError> {
        if self.schema != T::schema() {
            Err(SchemaMismatchError)
        } else {
            let mut refs = self.get_many_ref_mut(entities);
            let refs = std::array::from_fn(|i| {
                let r = refs[i].take();
                // SOUND: we've validated the schema matches.
                r.map(|r| unsafe { r.cast_into_mut_unchecked() })
            });

            Ok(refs)
        }
    }

    /// Get [`SchemaRefMut`]s to the component data for multiple entities at the same time.
    ///
    /// # Panics
    ///
    /// This will panic if the same entity is specified multiple times. This is invalid because it
    /// would mean you would have two mutable references to the same component data at the same
    /// time.
    pub fn get_many_ref_mut<const N: usize>(
        &mut self,
        entities: [Entity; N],
    ) -> [Option<SchemaRefMut>; N] {
        // Sort a copy of the passed in entities list.
        let mut sorted = entities;
        sorted.sort_unstable();
        // Detect duplicates.
        //
        // Since we have sorted the slice, any duplicates will be adjacent to each-other, and we
        // only have to make sure that for every item in the slice, the one after it is not the same
        // as it.
        for i in 0..(N - 1) {
            if sorted[i] == sorted[i + 1] {
                panic!("All entities passed to `get_multiple_mut()` must be unique.");
            }
        }

        std::array::from_fn(|i| {
            let index = entities[i].index() as usize;

            if self.bitset.bit_test(index) {
                // SOUND: we've already validated that the contents of storage is valid for type T.
                // The new lifetime is sound because we validate that all of these borrows don't
                // overlap and their lifetimes are that of the &mut self borrow.
                unsafe {
                    let ptr = self.storage.unchecked_idx(index);
                    Some(SchemaRefMut::from_ptr_schema(ptr, self.schema))
                }
            } else {
                None
            }
        })
    }

    /// Remove the component data for the entity if it exists.
    /// # Errors
    /// Errors if the schema doesn't match.
    #[inline]
    #[track_caller]
    pub fn remove<T: HasSchema>(&mut self, entity: Entity) -> Option<T> {
        self.try_remove(entity).unwrap()
    }

    /// Remove the component data for the entity if it exists.
    /// # Errors
    /// Errors if the schema doesn't match.
    pub fn try_remove<T: HasSchema>(
        &mut self,
        entity: Entity,
    ) -> Result<Option<T>, SchemaMismatchError> {
        if self.schema != T::schema() {
            Err(SchemaMismatchError)
        } else if self.bitset.contains(entity) {
            let mut data = MaybeUninit::<T>::uninit();
            // SOUND: the data doesn't overlap the storage.
            unsafe { self.remove_raw(entity, Some(data.as_mut_ptr() as *mut c_void)) };

            // SOUND: we've initialized the data.
            Ok(Some(unsafe { data.assume_init() }))
        } else {
            // SOUND: we don't use the out pointer.
            unsafe { self.remove_raw(entity, None) };
            Ok(None)
        }
    }

    /// Remove the component data for the entity if it exists.
    pub fn remove_box(&mut self, entity: Entity) -> Option<SchemaBox> {
        if self.bitset.contains(entity) {
            // SOUND: we will immediately initialize the schema box with data matching the schema.
            let b = unsafe { SchemaBox::uninitialized(self.schema) };
            // SOUND: the box data doesn't overlap the storage.
            unsafe { self.remove_raw(entity, Some(b.as_ptr())) };
            Some(b)
        } else {
            // SOUND: we don't use the out pointer.
            unsafe { self.remove_raw(entity, None) };
            None
        }
    }

    /// If there is a previous value, `true` will be returned.
    ///
    /// If `out` is set and true is returned, the previous value will be written to it.
    ///
    /// # Safety
    ///
    /// If set, the `out` pointer, must not overlap the internal component storage.
    pub unsafe fn remove_raw(&mut self, entity: Entity, out: Option<*mut c_void>) -> bool {
        let index = entity.index() as usize;
        let size = self.schema.layout().size();

        if self.bitset.bit_test(index) {
            self.bitset.bit_reset(index);

            let ptr = self.storage.unchecked_idx(index);

            if let Some(out) = out {
                // SAFE: user asserts `out` is non-overlapping
                out.copy_from_nonoverlapping(ptr, size);
            } else if let Some(drop_fn) = &self.schema.drop_fn {
                // SAFE: construcing `UntypedComponentStore` asserts the soundess of the drop_fn
                //
                // And ptr is a valid pointer to the component type.
                drop_fn.get()(ptr);
            }

            // Found previous component
            true
        } else {
            // No previous component
            false
        }
    }

    /// Get a reference to the component store if there is exactly one instance of the component.
    pub fn get_single_with_bitset(
        &self,
        bitset: Rc<BitSetVec>,
    ) -> Result<SchemaRef, QuerySingleError> {
        if self.bitset().bit_count() == 0 || bitset.bit_count() == 0 {
            // Both bitsets are empty so there are no matches
            return Err(QuerySingleError::NoEntities);
        }

        let len = self.bitset().bit_len();
        let mut iter = (0..len).filter(|&i| bitset.bit_test(i) && self.bitset().bit_test(i));

        // Try to find the first match
        let i = iter.next().ok_or(QuerySingleError::NoEntities)?;

        if iter.next().is_some() {
            // Found an unexpected second match in both bitsets
            return Err(QuerySingleError::MultipleEntities);
        }

        // TODO: add unchecked variant to avoid redundant validation
        self.get_idx(i).ok_or(QuerySingleError::NoEntities)
    }

    /// Get a mutable reference to the component store if there is exactly one instance of the
    /// component.
    pub fn get_single_with_bitset_mut(
        &mut self,
        bitset: Rc<BitSetVec>,
    ) -> Result<SchemaRefMut, QuerySingleError> {
        if self.bitset().bit_count() == 0 || bitset.bit_count() == 0 {
            // Both bitsets are empty so there are no matches
            return Err(QuerySingleError::NoEntities);
        }

        let len = self.bitset().bit_len();
        let mut iter = (0..len).filter(|&i| bitset.bit_test(i) && self.bitset().bit_test(i));

        // Try to find the first match
        let i = iter.next().ok_or(QuerySingleError::NoEntities)?;

        if iter.next().is_some() {
            // Found an unexpected second match in both bitsets
            return Err(QuerySingleError::MultipleEntities);
        }

        // TODO: add unchecked variant to avoid redundant validation
        self.get_idx_mut(i).ok_or(QuerySingleError::NoEntities)
    }

    /// Iterates immutably over all components of this type.
    ///
    /// Very fast but doesn't allow joining with other component types.
    pub fn iter(&self) -> UntypedComponentStoreIter<'_> {
        UntypedComponentStoreIter {
            store: self,
            idx: 0,
        }
    }

    /// Iterates mutably over all components of this type.
    ///
    /// Very fast but doesn't allow joining with other component types.
    pub fn iter_mut(&mut self) -> UntypedComponentStoreIterMut<'_> {
        UntypedComponentStoreIterMut {
            store: self,
            idx: 0,
        }
    }

    /// Iterates immutably over the components of this type where `bitset` indicates the indices of
    /// entities.
    ///
    /// Slower than `iter()` but allows joining between multiple component types.
    pub fn iter_with_bitset(&self, bitset: Rc<BitSetVec>) -> UntypedComponentBitsetIterator {
        UntypedComponentBitsetIterator {
            current_id: 0,
            components: self,
            bitset,
        }
    }

    /// Iterates mutable over the components of this type where `bitset` indicates the indices of
    /// entities.
    ///
    /// Slower than `iter()` but allows joining between multiple component types.
    pub fn iter_mut_with_bitset(
        &mut self,
        bitset: Rc<BitSetVec>,
    ) -> UntypedComponentBitsetIteratorMut {
        UntypedComponentBitsetIteratorMut {
            current_id: 0,
            components: self,
            bitset,
        }
    }

    /// Iterates immutably over the components of this type where `bitset` indicates the indices of
    /// entities. Iterator provides Option, returning None if there is no component for entity in bitset.
    pub fn iter_with_bitset_optional(
        &self,
        bitset: Rc<BitSetVec>,
    ) -> UntypedComponentOptionalBitsetIterator {
        let components_count = self.bitset.bit_count();
        let query_count = bitset.bit_count();
        UntypedComponentOptionalBitsetIterator {
            inner: UntypedComponentBitsetIterator {
                current_id: 0,
                components: self,
                bitset,
            },
            components_count,
            query_count,
            found: 0,
        }
    }

    /// Iterates mutably over the components of this type where `bitset` indicates the indices of
    /// entities. Iterator provides Option, returning None if there is no component for entity in bitset.
    pub fn iter_mut_with_bitset_optional(
        &mut self,
        bitset: Rc<BitSetVec>,
    ) -> UntypedComponentOptionalBitsetIteratorMut {
        let components_count = self.bitset.bit_count();
        let query_count = bitset.bit_count();
        UntypedComponentOptionalBitsetIteratorMut {
            inner: UntypedComponentBitsetIteratorMut {
                current_id: 0,
                components: self,
                bitset,
            },
            components_count,
            query_count,
            found: 0,
        }
    }

    /// Returns the bitset indicating which entity indices have a component associated to them.
    ///
    /// Useful to build conditions between multiple `Components`' bitsets.
    ///
    /// For example, take two bitsets from two different `Components` types. Then,
    /// bitset1.clone().bit_and(bitset2); And finally, you can use bitset1 in `iter_with_bitset` and
    /// `iter_mut_with_bitset`. This will iterate over the components of the entity only for
    /// entities that have both components.
    pub fn bitset(&self) -> &BitSetVec {
        &self.bitset
    }

    /// Convert into a typed [`ComponentStore`].
    /// # Panics
    /// Panics if the schema doesn't match.
    #[inline]
    #[track_caller]
    pub fn into_typed<T: HasSchema>(self) -> ComponentStore<T> {
        self.try_into().unwrap()
    }
}

/// Mutable iterator over pointers in an untyped component store.
pub struct UntypedComponentStoreIter<'a> {
    store: &'a UntypedComponentStore,
    idx: usize,
}
impl<'a> Iterator for UntypedComponentStoreIter<'a> {
    type Item = SchemaRef<'a>;
    fn next(&mut self) -> Option<Self::Item> {
        loop {
            if self.idx < self.store.max_id {
                if let Some(ptr) = self.store.get_idx(self.idx) {
                    self.idx += 1;
                    break Some(ptr);
                }
                self.idx += 1;
            } else {
                break None;
            }
        }
    }
}

/// Mutable iterator over pointers in an untyped component store.
pub struct UntypedComponentStoreIterMut<'a> {
    store: &'a mut UntypedComponentStore,
    idx: usize,
}
impl<'a> Iterator for UntypedComponentStoreIterMut<'a> {
    type Item = SchemaRefMut<'a>;
    fn next(&mut self) -> Option<Self::Item> {
        loop {
            if self.idx < self.store.max_id {
                if let Some(ptr) = self.store.get_idx_mut(self.idx) {
                    self.idx += 1;
                    // Re-create the ref to extend the lifetime.
                    // SOUND: We know the pointer will be valid for the lifetime of the store.
                    break Some(unsafe {
                        SchemaRefMut::from_ptr_schema(ptr.as_ptr(), ptr.schema())
                    });
                }
                self.idx += 1;
            } else {
                break None;
            }
        }
    }
}