1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
use crate::prelude::*;
use bones_schema::alloc::ResizableAlloc;
use std::{
ffi::c_void,
mem::MaybeUninit,
ptr::{self},
rc::Rc,
};
/// Holds components of a given type indexed by `Entity`.
///
/// We do not check if the given entity is alive here, this should be done using `Entities`.
pub struct UntypedComponentStore {
pub(crate) bitset: BitSetVec,
pub(crate) storage: ResizableAlloc,
pub(crate) max_id: usize,
pub(crate) schema: &'static Schema,
}
unsafe impl Sync for UntypedComponentStore {}
unsafe impl Send for UntypedComponentStore {}
impl Clone for UntypedComponentStore {
fn clone(&self) -> Self {
let new_storage = self.storage.clone();
for i in 0..self.max_id {
if self.bitset.bit_test(i) {
// SAFE: constructing an UntypedComponent store is unsafe, and the user affirms that
// clone_fn will not do anything unsound.
//
// - And our previous pointer is a valid pointer to component data
// - And our new pointer is a writable pointer with the same layout
unsafe {
let prev_ptr = self.storage.unchecked_idx(i);
let new_ptr = new_storage.unchecked_idx(i);
(self
.schema
.clone_fn
.as_ref()
.expect("Cannot clone component")
.get())(prev_ptr, new_ptr);
}
}
}
Self {
bitset: self.bitset.clone(),
storage: new_storage,
max_id: self.max_id,
schema: self.schema,
}
}
}
impl Drop for UntypedComponentStore {
fn drop(&mut self) {
if let Some(drop_fn) = &self.schema.drop_fn {
for i in 0..self.storage.capacity() {
if self.bitset.bit_test(i) {
// SAFE: constructing an UntypedComponent store is unsafe, and the user affirms
// that drop_fn will not do anything unsound.
//
// And our pointer is valid.
unsafe {
let ptr = self.storage.unchecked_idx(i);
drop_fn.get()(ptr);
}
}
}
}
}
}
impl UntypedComponentStore {
/// Create a arbitrary [`UntypedComponentStore`].
///
/// In Rust, you will usually not use [`UntypedComponentStore`] and will use the statically
/// typed [`ComponentStore<T>`] instead.
pub fn new(schema: &'static Schema) -> Self {
Self {
bitset: create_bitset(),
storage: ResizableAlloc::new(schema.layout()),
max_id: 0,
schema,
}
}
/// Create an [`UntypedComponentStore`] that is valid for the given type `T`.
pub fn for_type<T: HasSchema>() -> Self {
Self {
bitset: create_bitset(),
storage: ResizableAlloc::new(T::schema().layout()),
max_id: 0,
schema: T::schema(),
}
}
/// Get the schema of the components stored.
pub fn schema(&self) -> &'static Schema {
self.schema
}
/// Insert component data for the given entity and get the previous component data if present.
/// # Panics
/// Panics if the schema of `T` doesn't match the store.
#[inline]
#[track_caller]
pub fn insert_box(&mut self, entity: Entity, data: SchemaBox) -> Option<SchemaBox> {
self.try_insert_box(entity, data).unwrap()
}
/// Insert component data for the given entity and get the previous component data if present.
/// # Errors
/// Errors if the schema of `T` doesn't match the store.
pub fn try_insert_box(
&mut self,
entity: Entity,
data: SchemaBox,
) -> Result<Option<SchemaBox>, SchemaMismatchError> {
if self.schema != data.schema() {
Err(SchemaMismatchError)
} else {
let ptr = data.as_ptr();
// SOUND: we validated schema matches
let already_had_component = unsafe { self.insert_raw(entity, ptr) };
if already_had_component {
// Previous component data will be written to data pointer
Ok(Some(data))
} else {
// Don't run the data's destructor, it has been moved into the storage.
std::mem::forget(data);
Ok(None)
}
}
}
/// Insert component data for the given entity and get the previous component data if present.
/// # Panics
/// Panics if the schema of `T` doesn't match the store.
#[inline]
#[track_caller]
pub fn insert<T: HasSchema>(&mut self, entity: Entity, data: T) -> Option<T> {
self.try_insert(entity, data).unwrap()
}
/// Insert component data for the given entity and get the previous component data if present.
/// # Errors
/// Errors if the schema of `T` doesn't match the store.
pub fn try_insert<T: HasSchema>(
&mut self,
entity: Entity,
mut data: T,
) -> Result<Option<T>, SchemaMismatchError> {
if self.schema != T::schema() {
Err(SchemaMismatchError)
} else {
let ptr = &mut data as *mut T as *mut c_void;
// SOUND: we validated schema matches
let already_had_component = unsafe { self.insert_raw(entity, ptr) };
if already_had_component {
// Previous component data will be written to data pointer
Ok(Some(data))
} else {
// Don't run the data's destructor, it has been moved into the storage.
std::mem::forget(data);
Ok(None)
}
}
}
/// Returns true if the entity already had a component of this type.
///
/// If true is returned, the previous value of the pointer will be written to `data`.
///
/// # Safety
/// - The data must be a pointer to memory with the same schema.
/// - If `false` is returned you must ensure the `data` pointer is not used after pushing.
pub unsafe fn insert_raw(&mut self, entity: Entity, data: *mut c_void) -> bool {
let index = entity.index() as usize;
let size = self.schema.layout().size();
// If the component already exists on the entity
if self.bitset.bit_test(entity.index() as usize) {
let ptr = self.storage.unchecked_idx(index);
// Swap the data with the data already there
ptr::swap_nonoverlapping(ptr, data, size);
// There was already a component of this type
true
// If the component does not already exist for this entity.
} else {
// Update our maximum enitity id.
self.max_id = self.max_id.max(index + 1);
// Make sure we have enough memory allocated for storage.
self.allocate_enough(index);
// Set the bit indicating that this entity has this component data stored.
self.bitset.bit_set(index);
// Copy the data from the data pointer into our storage
self.storage
.unchecked_idx(index)
.copy_from_nonoverlapping(data, size);
// There was not already a component of this type
false
}
}
/// Ensures that we have the storage filled at least until the `until` variable.
///
/// Usually, set this to `entity.index`.
fn allocate_enough(&mut self, until: usize) {
if self.storage.capacity() <= until {
self.storage
// TODO: Determine a better policy for resizing and pre-allocating component storage.
// Right now we double the size of the storage every time we run out. It seems like we
// might be able to come up with a smarter policy. On top of that we should
// be able to create a type data for components ( see
// `bones_framework::metadata_asset()` for example ) that lets you customize the resize
// and also pre-allocation strategy for the component. Right now we don't pre-allocate
// any memory, but that could be useful for components that know there will be a lot of
// them, such as bullets.
.resize((until + 1) * 2)
.unwrap();
}
}
/// Get a reference to the component storage for the given [`Entity`].
/// # Panics
/// Panics if the schema of `T` doesn't match.
#[track_caller]
#[inline]
pub fn get<T: HasSchema>(&self, entity: Entity) -> Option<&T> {
self.try_get(entity).unwrap()
}
/// Get a reference to the component storage for the given [`Entity`].
/// # Errors
/// Errors if the schema of `T` doesn't match.
pub fn try_get<T: HasSchema>(&self, entity: Entity) -> Result<Option<&T>, SchemaMismatchError> {
self.get_ref(entity).map(|x| x.try_cast()).transpose()
}
/// Get a [`SchemaRef`] to the component for the given [`Entity`] if the entity has this
/// component.
#[inline]
pub fn get_ref(&self, entity: Entity) -> Option<SchemaRef> {
let idx = entity.index() as usize;
self.get_idx(idx)
}
fn get_idx(&self, idx: usize) -> Option<SchemaRef> {
if self.bitset.bit_test(idx) {
// SOUND: we ensure that there is allocated storge for entities that have their bit set.
let ptr = unsafe { self.storage.unchecked_idx(idx) };
// SOUND: we know that the pointer has our schema.
Some(unsafe { SchemaRef::from_ptr_schema(ptr, self.schema) })
} else {
None
}
}
/// Get a mutable reference to the component storage for the given [`Entity`].
/// # Panics
/// Panics if the schema of `T` doesn't match.
#[track_caller]
#[inline]
pub fn get_mut<T: HasSchema>(&mut self, entity: Entity) -> Option<&mut T> {
self.try_get_mut(entity).unwrap()
}
/// Get a mutable reference to the component storage for the given [`Entity`].
/// # Errors
/// Errors if the schema of `T` doesn't match.
pub fn try_get_mut<T: HasSchema>(
&mut self,
entity: Entity,
) -> Result<Option<&mut T>, SchemaMismatchError> {
self.get_ref_mut(entity)
.map(|x| x.try_cast_into_mut())
.transpose()
}
/// Get a mutable reference to component storage for the given [`Entity`]
/// if it exists. Otherwise inserts `T` generated by calling parameter: `f`.
#[inline]
pub fn get_mut_or_insert<T: HasSchema>(
&mut self,
entity: Entity,
f: impl FnOnce() -> T,
) -> &mut T {
if !self.bitset.bit_test(entity.index() as usize) {
self.insert(entity, f());
}
self.get_mut(entity).unwrap()
}
/// Get a [`SchemaRefMut`] to the component for the given [`Entity`]
#[inline]
pub fn get_ref_mut<'a>(&mut self, entity: Entity) -> Option<SchemaRefMut<'a>> {
let idx = entity.index() as usize;
self.get_idx_mut(idx)
}
fn get_idx_mut<'a>(&mut self, idx: usize) -> Option<SchemaRefMut<'a>> {
if self.bitset.bit_test(idx) {
// SOUND: we ensure that there is allocated storage for entities that have their bit
// set.
let ptr = unsafe { self.storage.unchecked_idx(idx) };
// SOUND: we know that the pointer has our schema.
Some(unsafe { SchemaRefMut::from_ptr_schema(ptr, self.schema) })
} else {
None
}
}
/// Get mutable references s to the component data for multiple entities at the same time.
///
/// # Panics
///
/// This will panic if the same entity is specified multiple times. This is invalid because it
/// would mean you would have two mutable references to the same component data at the same
/// time.
///
/// This will also panic if there is a schema mismatch.
#[inline]
#[track_caller]
pub fn get_many_mut<const N: usize, T: HasSchema>(
&mut self,
entities: [Entity; N],
) -> [Option<&mut T>; N] {
self.try_get_many_mut(entities).unwrap()
}
/// Get mutable references s to the component data for multiple entities at the same time.
///
/// # Panics
///
/// This will panic if the same entity is specified multiple times. This is invalid because it
/// would mean you would have two mutable references to the same component data at the same
/// time.
///
/// # Errors
///
/// This will error if there is a schema mismatch.
pub fn try_get_many_mut<const N: usize, T: HasSchema>(
&mut self,
entities: [Entity; N],
) -> Result<[Option<&mut T>; N], SchemaMismatchError> {
if self.schema != T::schema() {
Err(SchemaMismatchError)
} else {
let mut refs = self.get_many_ref_mut(entities);
let refs = std::array::from_fn(|i| {
let r = refs[i].take();
// SOUND: we've validated the schema matches.
r.map(|r| unsafe { r.cast_into_mut_unchecked() })
});
Ok(refs)
}
}
/// Get [`SchemaRefMut`]s to the component data for multiple entities at the same time.
///
/// # Panics
///
/// This will panic if the same entity is specified multiple times. This is invalid because it
/// would mean you would have two mutable references to the same component data at the same
/// time.
pub fn get_many_ref_mut<const N: usize>(
&mut self,
entities: [Entity; N],
) -> [Option<SchemaRefMut>; N] {
// Sort a copy of the passed in entities list.
let mut sorted = entities;
sorted.sort_unstable();
// Detect duplicates.
//
// Since we have sorted the slice, any duplicates will be adjacent to each-other, and we
// only have to make sure that for every item in the slice, the one after it is not the same
// as it.
for i in 0..(N - 1) {
if sorted[i] == sorted[i + 1] {
panic!("All entities passed to `get_multiple_mut()` must be unique.");
}
}
std::array::from_fn(|i| {
let index = entities[i].index() as usize;
if self.bitset.bit_test(index) {
// SOUND: we've already validated that the contents of storage is valid for type T.
// The new lifetime is sound because we validate that all of these borrows don't
// overlap and their lifetimes are that of the &mut self borrow.
unsafe {
let ptr = self.storage.unchecked_idx(index);
Some(SchemaRefMut::from_ptr_schema(ptr, self.schema))
}
} else {
None
}
})
}
/// Remove the component data for the entity if it exists.
/// # Errors
/// Errors if the schema doesn't match.
#[inline]
#[track_caller]
pub fn remove<T: HasSchema>(&mut self, entity: Entity) -> Option<T> {
self.try_remove(entity).unwrap()
}
/// Remove the component data for the entity if it exists.
/// # Errors
/// Errors if the schema doesn't match.
pub fn try_remove<T: HasSchema>(
&mut self,
entity: Entity,
) -> Result<Option<T>, SchemaMismatchError> {
if self.schema != T::schema() {
Err(SchemaMismatchError)
} else if self.bitset.contains(entity) {
let mut data = MaybeUninit::<T>::uninit();
// SOUND: the data doesn't overlap the storage.
unsafe { self.remove_raw(entity, Some(data.as_mut_ptr() as *mut c_void)) };
// SOUND: we've initialized the data.
Ok(Some(unsafe { data.assume_init() }))
} else {
// SOUND: we don't use the out pointer.
unsafe { self.remove_raw(entity, None) };
Ok(None)
}
}
/// Remove the component data for the entity if it exists.
pub fn remove_box(&mut self, entity: Entity) -> Option<SchemaBox> {
if self.bitset.contains(entity) {
// SOUND: we will immediately initialize the schema box with data matching the schema.
let b = unsafe { SchemaBox::uninitialized(self.schema) };
// SOUND: the box data doesn't overlap the storage.
unsafe { self.remove_raw(entity, Some(b.as_ptr())) };
Some(b)
} else {
// SOUND: we don't use the out pointer.
unsafe { self.remove_raw(entity, None) };
None
}
}
/// If there is a previous value, `true` will be returned.
///
/// If `out` is set and true is returned, the previous value will be written to it.
///
/// # Safety
///
/// If set, the `out` pointer, must not overlap the internal component storage.
pub unsafe fn remove_raw(&mut self, entity: Entity, out: Option<*mut c_void>) -> bool {
let index = entity.index() as usize;
let size = self.schema.layout().size();
if self.bitset.bit_test(index) {
self.bitset.bit_reset(index);
let ptr = self.storage.unchecked_idx(index);
if let Some(out) = out {
// SAFE: user asserts `out` is non-overlapping
out.copy_from_nonoverlapping(ptr, size);
} else if let Some(drop_fn) = &self.schema.drop_fn {
// SAFE: construcing `UntypedComponentStore` asserts the soundess of the drop_fn
//
// And ptr is a valid pointer to the component type.
drop_fn.get()(ptr);
}
// Found previous component
true
} else {
// No previous component
false
}
}
/// Get a reference to the component store if there is exactly one instance of the component.
pub fn get_single_with_bitset(
&self,
bitset: Rc<BitSetVec>,
) -> Result<SchemaRef, QuerySingleError> {
if self.bitset().bit_count() == 0 || bitset.bit_count() == 0 {
// Both bitsets are empty so there are no matches
return Err(QuerySingleError::NoEntities);
}
let len = self.bitset().bit_len();
let mut iter = (0..len).filter(|&i| bitset.bit_test(i) && self.bitset().bit_test(i));
// Try to find the first match
let i = iter.next().ok_or(QuerySingleError::NoEntities)?;
if iter.next().is_some() {
// Found an unexpected second match in both bitsets
return Err(QuerySingleError::MultipleEntities);
}
// TODO: add unchecked variant to avoid redundant validation
self.get_idx(i).ok_or(QuerySingleError::NoEntities)
}
/// Get a mutable reference to the component store if there is exactly one instance of the
/// component.
pub fn get_single_with_bitset_mut(
&mut self,
bitset: Rc<BitSetVec>,
) -> Result<SchemaRefMut, QuerySingleError> {
if self.bitset().bit_count() == 0 || bitset.bit_count() == 0 {
// Both bitsets are empty so there are no matches
return Err(QuerySingleError::NoEntities);
}
let len = self.bitset().bit_len();
let mut iter = (0..len).filter(|&i| bitset.bit_test(i) && self.bitset().bit_test(i));
// Try to find the first match
let i = iter.next().ok_or(QuerySingleError::NoEntities)?;
if iter.next().is_some() {
// Found an unexpected second match in both bitsets
return Err(QuerySingleError::MultipleEntities);
}
// TODO: add unchecked variant to avoid redundant validation
self.get_idx_mut(i).ok_or(QuerySingleError::NoEntities)
}
/// Iterates immutably over all components of this type.
///
/// Very fast but doesn't allow joining with other component types.
pub fn iter(&self) -> UntypedComponentStoreIter<'_> {
UntypedComponentStoreIter {
store: self,
idx: 0,
}
}
/// Iterates mutably over all components of this type.
///
/// Very fast but doesn't allow joining with other component types.
pub fn iter_mut(&mut self) -> UntypedComponentStoreIterMut<'_> {
UntypedComponentStoreIterMut {
store: self,
idx: 0,
}
}
/// Iterates immutably over the components of this type where `bitset` indicates the indices of
/// entities.
///
/// Slower than `iter()` but allows joining between multiple component types.
pub fn iter_with_bitset(&self, bitset: Rc<BitSetVec>) -> UntypedComponentBitsetIterator {
UntypedComponentBitsetIterator {
current_id: 0,
components: self,
bitset,
}
}
/// Iterates mutable over the components of this type where `bitset` indicates the indices of
/// entities.
///
/// Slower than `iter()` but allows joining between multiple component types.
pub fn iter_mut_with_bitset(
&mut self,
bitset: Rc<BitSetVec>,
) -> UntypedComponentBitsetIteratorMut {
UntypedComponentBitsetIteratorMut {
current_id: 0,
components: self,
bitset,
}
}
/// Iterates immutably over the components of this type where `bitset` indicates the indices of
/// entities. Iterator provides Option, returning None if there is no component for entity in bitset.
pub fn iter_with_bitset_optional(
&self,
bitset: Rc<BitSetVec>,
) -> UntypedComponentOptionalBitsetIterator {
let components_count = self.bitset.bit_count();
let query_count = bitset.bit_count();
UntypedComponentOptionalBitsetIterator {
inner: UntypedComponentBitsetIterator {
current_id: 0,
components: self,
bitset,
},
components_count,
query_count,
found: 0,
}
}
/// Iterates mutably over the components of this type where `bitset` indicates the indices of
/// entities. Iterator provides Option, returning None if there is no component for entity in bitset.
pub fn iter_mut_with_bitset_optional(
&mut self,
bitset: Rc<BitSetVec>,
) -> UntypedComponentOptionalBitsetIteratorMut {
let components_count = self.bitset.bit_count();
let query_count = bitset.bit_count();
UntypedComponentOptionalBitsetIteratorMut {
inner: UntypedComponentBitsetIteratorMut {
current_id: 0,
components: self,
bitset,
},
components_count,
query_count,
found: 0,
}
}
/// Returns the bitset indicating which entity indices have a component associated to them.
///
/// Useful to build conditions between multiple `Components`' bitsets.
///
/// For example, take two bitsets from two different `Components` types. Then,
/// bitset1.clone().bit_and(bitset2); And finally, you can use bitset1 in `iter_with_bitset` and
/// `iter_mut_with_bitset`. This will iterate over the components of the entity only for
/// entities that have both components.
pub fn bitset(&self) -> &BitSetVec {
&self.bitset
}
/// Convert into a typed [`ComponentStore`].
/// # Panics
/// Panics if the schema doesn't match.
#[inline]
#[track_caller]
pub fn into_typed<T: HasSchema>(self) -> ComponentStore<T> {
self.try_into().unwrap()
}
}
/// Mutable iterator over pointers in an untyped component store.
pub struct UntypedComponentStoreIter<'a> {
store: &'a UntypedComponentStore,
idx: usize,
}
impl<'a> Iterator for UntypedComponentStoreIter<'a> {
type Item = SchemaRef<'a>;
fn next(&mut self) -> Option<Self::Item> {
loop {
if self.idx < self.store.max_id {
if let Some(ptr) = self.store.get_idx(self.idx) {
self.idx += 1;
break Some(ptr);
}
self.idx += 1;
} else {
break None;
}
}
}
}
/// Mutable iterator over pointers in an untyped component store.
pub struct UntypedComponentStoreIterMut<'a> {
store: &'a mut UntypedComponentStore,
idx: usize,
}
impl<'a> Iterator for UntypedComponentStoreIterMut<'a> {
type Item = SchemaRefMut<'a>;
fn next(&mut self) -> Option<Self::Item> {
loop {
if self.idx < self.store.max_id {
if let Some(ptr) = self.store.get_idx_mut(self.idx) {
self.idx += 1;
// Re-create the ref to extend the lifetime.
// SOUND: We know the pointer will be valid for the lifetime of the store.
break Some(unsafe {
SchemaRefMut::from_ptr_schema(ptr.as_ptr(), ptr.schema())
});
}
self.idx += 1;
} else {
break None;
}
}
}
}